全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

DOI: 10.1155/2012/302581

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. 1. Introduction Medical signal processing is a fast growing field of research that is producing increasingly sophisticated applications in today’s high-tech medicine [1–8]. In the field of neurology, EEG, the manifestation of brain’s electrical activity as scalp potentials, remains as one of the commonly used noninvasive techniques for understanding brain functions in health and disease. Since its discovery by Berger [9], many research activities have centered on how to automatically extract useful information about the brain’s conditions based on the distinct characteristics of EEG signals. Many applications require acquisition, storage, and automatic processing of EEG during an extended period of time [4, 10–20]. For example, 24?h monitoring of a multiple-channel EEG is needed for epilepsy patients. The frequency range of a normal adult EEG lies between 0.1–100?Hz; thus, a minimum sampling rate of 200?Hz is needed. At the quantization level of 16 bit/sample, a 10-channel EEG for a 24?h period would require storage space of 346?Mb. Furthermore in order to diagnose the disease and to assess the effectiveness of the treatment via the brain functions, the

References

[1]  S. Singh, V. Kumar, and H. K. Verma, “Adaptive threshold-based block classification in medical image compression for teleradiology,” Computers in Biology and Medicine, vol. 37, no. 6, pp. 811–819, 2007.
[2]  M. Takizawa, S. Sone, K. Hanamura, and K. Asakura, “Telemedicine system using computed tomography van of high-speed telecommunication vehicle,” IEEE Transactions on Information Technology in Biomedicine, vol. 5, no. 1, pp. 2–9, 2001.
[3]  Y. T. Chen and D. C. Tseng, “Wavelet-based medical image compression with adaptive prediction,” Computerized Medical Imaging and Graphics, vol. 31, no. 1, pp. 1–8, 2007.
[4]  N. Memon, X. Kong, and J. Cinkler, “Context-based lossless and near-lossless compression of EEG signals,” IEEE Transactions on Information Technology in Biomedicine, vol. 3, no. 3, pp. 231–238, 1999.
[5]  A. Munteanu, J. Cornelis, G. Van Der Auwera, and P. Cristea, “Wavelet-based lossless compression of coronary an giographic images,” IEEE Transactions on Medical Imaging, vol. 18, no. 3, pp. 272–281, 1999.
[6]  J. L. Cardenas-Barrera and J. V. Lorenzo-Ginori, “Mean-shape vector quantizer for ECG signal compression,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 1, pp. 62–70, 1999.
[7]  R. Agarwal, J. Gotman, D. Flanagan, and B. Rosenblatt, “Automatic EEG analysis during long-term monitoring in the ICU,” Electroencephalography and Clinical Neurophysiology, vol. 107, no. 1, pp. 44–58, 1998.
[8]  R. Agarwal and J. Gotman, “Computer-assisted sleep staging,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 12, pp. 1412–1423, 2001.
[9]  H. Berger, “über das elektroenkephalogram des menschen,” Archiv für Psychiatrie und Nervenkrankheiten, vol. 87, no. 1, pp. 527–570, 1929.
[10]  G. Antoniol and P. Tonella, “EEG data compression techniques,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 2, pp. 105–114, 1997.
[11]  N. Magotra, G. Mandyam, M. Sun, and W. McCoy, “Lossless compression of electroencephalographic (EEG) data,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '96), pp. 313–315, May 1996.
[12]  F. Bartolini, V. Cappellini, S. Nerozzi, and A. Mecocci, “Recurrent neural network predictors for EEG signal compression,” in Proceedings of the 1995 20th International Conference on Acoustics, Speech, and Signal Processing, pp. 3395–3398, May 1995.
[13]  N. Sriraam and C. Eswaran, “EEG signal compression using optimally configuredv neural network predictors,” in Proceedings of the Inteantional Conference on Medical Signal and Information Processing Conference, pp. 378–382, 2004.
[14]  N. Sriraam and C. Eswaran, “Performance evaluation of two-stage lossless compression of EEG signals,” International Journal of Signal Processing, vol. 1, no. 2, pp. 94–97, 2004.
[15]  R. Agarwal and J. Gotman, “Long-term EEG compression for intensive-care settings,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 5, pp. 23–29, 2001.
[16]  K. C. Yi, M. Sun, C. C. Li, and R. J. Sclabassi, “Lossless compression algorithm for multichannel EEG,” in Proceedings of the 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference, p. 429, October 1999.
[17]  N. Sriraam and C. Eswaran, “An adaptive error modeling scheme for the lossless compression of EEG signals,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 5, pp. 587–594, 2008.
[18]  Y. Wongsawat, S. Oraintara, T. Tanaka, and K. R. Rao, “Lossless multi-channel EEG compression,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '06), pp. 1611–1614, May 2006.
[19]  N. Sriraam and C. Eswaran, “Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 1, pp. 87–93, 2008.
[20]  D. Gopikrishna and A. Makur, “A high performance scheme for EEG compression using a multchannel model,” in Proceedings of the 9th International Conference on High Performance, vol. 2552 of Lecture Notes on Computer Science, pp. 443–451, 2002.
[21]  N. Sriraam and C. Eswaran, “Lossless compression algorithms for EEG Signals: a quantitative evaluation,” in Proceedings of the IEEE/EMBS 5th International Workshop on Biosignal Interpretation, pp. 125–130, 2005.
[22]  N. Sriraam and C. Eswaran, “Context based error modeling for lossless compression of EEG signals using neural networks,” Journal of Medical Systems, vol. 30, no. 6, pp. 439–448, 2006.
[23]  N. Sriraam, Neural network based lossless and quality controlled compression with error modeling for the compression of electroencephalography (EEG) signal, Ph.D. thesis, Multimedia University, 2007.
[24]  M. Fira and L. Goras, “Biomedical signal compression based on basis pursuit,” International Journal of Advanced Science and Technology, vol. 14, pp. 53–64, 2010.
[25]  K. K. Poh and P. Marziliano, “Compressive sampling of EEG signals with finite rate of innovation,” EURASIP Journal on Advances in Signal Processing, vol. 2010, Article ID 183105, 12 pages, 2010.
[26]  K. Srinivasan and M. Ramasubba Reddy, “Selection of optimal wavelet for lossless EEG compression for real-time applications,” Indian Journal of Biomechanics, pp. 241–245, 2010.
[27]  P. D. A. Berger, F. A. D. O. Nascimento, J. C. Do Carmo, and A. F. Da Rocha, “Compression of EMG signals with wavelet transform and artificial neural networks,” Physiological Measurement, vol. 27, no. 6, pp. 457–465, 2006.
[28]  J. Jiang, “Image compression with neural networks—a survey,” Signal Processing, vol. 14, no. 9, pp. 737–760, 1999.
[29]  H. Szu, B. Telfer, and J. Garcia, “Wavelet transforms and neural networks for compression and recognition,” Neural Networks, vol. 9, no. 4, pp. 695–708, 1996.
[30]  S. Haykin, Adaptive Filter Theory, Prentice Hall, New, York, NY, USA, 4th edition, 2001.
[31]  Filter design Toolbox 3.0 (for use with Matlab). The Math Works, 2000.
[32]  R. Logeswaran and C. Eswaran, “Neural network based lossless coding schemes for telemetry data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '99), pp. 2057–2059, July 1999.
[33]  S. M. Ahmed, A. Al-Shrouf, and M. Abo-Zahhad, “ECG data compression using optimal non-orthogonal wavelet transform,” Medical Engineering and Physics, vol. 22, no. 1, pp. 39–46, 2000.
[34]  A. Al-Shrouf, M. Abo-Zahhad, and S. M. Ahmed, “A novel compression algorithm for electrocardiogram signals based on the linear prediction of the wavelet coefficients,” Digital Signal Processing, vol. 13, no. 4, pp. 604–622, 2003.
[35]  J. Jyotheswar and S. Mahapatra, “Efficient FPGA implementation of DWT and modified SPIHT for lossless image compression,” Journal of Systems Architecture, vol. 53, no. 7, pp. 369–378, 2007.
[36]  X. Qi and J. M. Tyler, “A progressive transmission capable diagnostically lossless compression scheme for 3D medical image sets,” Information Sciences, vol. 175, no. 3, pp. 217–243, 2005.
[37]  K. Duda, P. Turcza, and T. P. Zielinski, “Loslsess ECG compression using lifting wavelet transform,” in Proceedings of the IEEE Conference on Instrumentation and Measurement, pp. 640–644, Hungary, 2001.
[38]  H. Kim and C. C. Li, “Lossless and lossy image compression using biorthogonal wavelet transforms with multiplierless operations,” IEEE Transactions on Circuits and Systems II, vol. 45, no. 8, pp. 1113–1118, 1998.
[39]  W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal wavelets,” Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 186–200, 1996.
[40]  R. D. Dony and S. Haykin, “Neural network approaches to image compression,” Proceedings of the IEEE, vol. 83, no. 2, pp. 288–303, 1995.
[41]  H. Demuth and M. Beale, Neural Network Toolbox (for use with Matlab), The Math Works.
[42]  X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Transactions on Communications, vol. 45, no. 4, pp. 437–444, 1997.
[43]  X. Wu, “Lossless compression of continuous-tone images via context selection, quantization, and modeling,” IEEE Transactions on Image Processing, vol. 6, no. 5, pp. 656–664, 1997.
[44]  R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state,” Physical Review E, vol. 64, no. 6, Article ID 061907, pp. 1–8, 2001.
[45]  R. Logeswaran, “Perceptron based neural network predictors in lossless data compression,” in Proceedings of the IEEE 5th International Conference on Siganl Processing, vol. 3, pp. 1709–1713, 2000.
[46]  R. Logeswaran and C. Eswaran, “Radial basis neural network for lossless data compression,” International Journal of Computers and Applications, vol. 24, no. 1, pp. 14–19, 2002.
[47]  M. Nelson and J. L. Gailly, The Data Compression Book, M&T Books, New York, NY, USA, 2nd edition, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133