全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lipofundin-Induced Hyperlipidemia Promotes Oxidative Stress and Atherosclerotic Lesions in New Zealand White Rabbits

DOI: 10.1155/2012/898769

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atherosclerosis represents a major cause of death in the world. It is known that Lipofundin 20% induces atherosclerotic lesions in rabbits, but its effects on serum lipids behaviour and redox environment have not been addressed. In this study, New Zealand rabbits were treated with 2?mL/kg of Lipofundin for 8 days. Then, redox biomarkers and serum lipids were determined spectrophotometrically. On the other hand, the development of atherosclerotic lesions was confirmed by eosin/hematoxylin staining and electron microscopy. At the end of the experiment, total cholesterol, triglycerides, cholesterol-LDL, and cholesterol-HDL levels were significantly increased. Also, a high index of biomolecules damage, a disruption of both enzymatic and nonenzymatic defenses, and a reduction of nitric oxide were observed. Our data demonstrated that Lipofundin 20% induces hyperlipidemia, which promotes an oxidative stress state. Due to the importance of these phenomena as risk factors for atherogenesis, we suggest that Lipofundin induces atherosclerosis mainly through these mechanisms. 1. Introduction Atherosclerosis is a chronic vascular disease and a leading cause of death in the western world. It is well established that hyperlipidemia and oxidative stress (OS) are major contributors to atherogenic development [1]. The retention of low-density lipoproteins (LDL) in the arterial wall [2] and their oxidation by reactive oxygen species (ROS) initiates a complex series of biochemical and inflammatory reactions [3, 4]. Oxidized LDL (ox-LDL) are internalized by macrophages through the scavenger receptors, leading to foam cell formation [5]. Furthermore, oxidized cholesterol products present in blood and in arterial plaques increase cholesterol biosynthesis, affect plasma membrane structure, cell proliferation, and cell death, and promotes atherosclerosis development [6]. The rabbit is one of the most widely used animal models in atherosclerosis research. One strategy to induce atherosclerotic lesions in these animals is through an intravenous administration of Lipofundin 20%, a lipid-rich emulsion used in parenteral nutrition, which produces aortic lesions, characterized by subendothelial lipid accumulation, intimal thickening, and a distortion of vascular tissue architecture [7, 8]. The impact of Lipofundin 20% administration on lipid levels and redox environment in New Zealand white (NZW) rabbits had not been studied. In the present work, we demonstrated that Lipofundin 20% induces a hyperlipemic state and a systemic/aortic oxidative stress, which can lead to atherosclerotic

References

[1]  H. Tavori, M. Aviram, S. Khatib et al., “Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 607–615, 2009.
[2]  K. J. Williams and I. Tabas, “The response-to-retention hypothesis of early atherogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 5, pp. 551–562, 1995.
[3]  D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” The New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989.
[4]  D. Steinberg, “Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,” Nature Medicine, vol. 8, no. 11, pp. 1211–1217, 2002.
[5]  R. Stocker and J. F. Keaney, “Role of oxidative modifications in atherosclerosis,” Physiological Reviews, vol. 84, no. 4, pp. 1381–1478, 2004.
[6]  A. Scoczynska, “The role of lipids in atherogenesis,” Post?py Higieny i Medycyny Do?wiadczalnej, vol. 59, pp. 346–357, 2005.
[7]  H. Jellinek, J. Harsing, and S. Fuzesi, “A new model for arteriosclerosis. An electron-microscopic study of the lesions induced by i.v. administered fat,” Atherosclerosis, vol. 43, no. 1, pp. 7–8, 1982.
[8]  M. Noa and R. Más, “Ateromixol y lesión ateroesclerótica en Conejos inducida por Lipofundin,” Progresos en Ciencias Médicas, vol. 6, pp. 14–19, 1992.
[9]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[10]  Boehringer Mannheim, Biochemica Information. A Revised Biochemical Reference Source. Enzymes for Routine, Boehringer Mannheim, Berlin, Germany, 1st edition, 1987.
[11]  J. Sedlak and R. H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent,” Analytical Biochemistry, vol. 25, no. C, pp. 192–205, 1968.
[12]  V. Witko-Sarsat, M. Friedlander, T. N. Khoa et al., “Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure,” Journal of Immunology, vol. 161, no. 5, pp. 2524–2532, 1998.
[13]  H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods in Enzymology, vol. 186, pp. 407–421, 1990.
[14]  I. Erdelmeier, D. Gerard-Monnier, J. C. Yadan, and J. Chaudiere, “Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation,” Chemical Research in Toxicology, vol. 11, pp. 1184–1194, 1998.
[15]  G. Ozdemirler, G. Mehmetcik, S. Oztezcan, G. Toker, A. Sivas, and M. Uysal, “Peroxidation potential and antioxidant activity of serum in patients with diabetes mellitus and myocardial infarction,” Hormone and Metabolic Research, vol. 27, pp. 194–196, 1995.
[16]  D. L. Granger, R. R. Taintor, K. S. Boockvar, and J. B. Hibbs, “Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction,” Methods, vol. 7, no. 1, pp. 78–83, 1995.
[17]  T. B. Horwich, A. F. Hernandez, D. Dai, C. W. Yancy, and G. C. Fonarow, “Cholesterol levels and in-hospital mortality in patients with acute decompensated heart failure,” American Heart Journal, vol. 156, no. 6, pp. 1170–1176, 2008.
[18]  S. J. Hur, M. Du, K. Nam, M. Williamson, and D. U. Ahn, “Effect of dietary fats on blood cholesterol and lipid and the development of atherosclerosis in rabbits,” Nutrition Research, vol. 25, no. 10, pp. 925–935, 2005.
[19]  K. S. Jain, M. K. Kathiravan, R. S. Somani, and C. J. Shishoo, “The biology and chemistry of hyperlipidemia,” Bioorganic and Medicinal Chemistry, vol. 15, no. 14, pp. 4674–4699, 2007.
[20]  L. A. Carlson, “Studies on the fat emulsion Intralipid. I. Association of serum proteins to Intralipid triglyceride particles (ITP),” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 40, no. 2, pp. 139–144, 1980.
[21]  S. Hailer and G. Wolfram, “Influence of artificial fat emulsions on the composition of serum lipoproteins in humans,” American Journal of Clinical Nutrition, vol. 43, no. 2, pp. 225–233, 1986.
[22]  J. R. Wetterau and D. B. Zilversmit, “Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes,” Chemistry and Physics of Lipids, vol. 38, no. 1-2, pp. 205–222, 1985.
[23]  R. Frikke-Schmidt, B. G. Nordestgaard, M. C. A. Stene et al., “Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease,” Journal of the American Medical Association, vol. 299, no. 21, pp. 2524–2532, 2008.
[24]  B. F. Asztalos and E. J. Schaefer, “High-density lipoprotein subpopulations in pathologic conditions,” American Journal of Cardiology, vol. 91, no. 7, 2003.
[25]  E. M. Tsompanidi, M. S. Brinkmeier, E. H. Fotiadou, S. M. Giakoumi, and K. E. Kypreos, “HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis,” Atherosclerosis, vol. 208, no. 1, pp. 3–9, 2010.
[26]  D. P. Jones, “Redefining oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1865–1879, 2006.
[27]  M. Sadidi, S. I. Lentz, and E. L. Feldman, “Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation,” Biochimie, vol. 91, no. 5, pp. 577–585, 2009.
[28]  S. Ashfaq, J. L. Abramson, D. P. Jones et al., “The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults,” Journal of the American College of Cardiology, vol. 47, no. 5, pp. 1005–1011, 2006.
[29]  R. Zhao and G. X. Shen, “Functional modulation of antioxidant enzymes in vascular endothelial cells by glycated LDL,” Atherosclerosis, vol. 179, no. 2, pp. 277–284, 2005.
[30]  L. D. Roche, E. A. Medina, Y. Hernández-Matos, M. A. Bécquer Viart, A. M. Vázquez López, and E. Fernández-Sánchez, “High levels of lipid peroxidation induced by Lipofundin administration correlate with atherosclerotic lesions in rabbits,” Pharmacologyonline, vol. 3, pp. 727–736, 2010.
[31]  S. Tani, K. Nagao, T. Anazawa et al., “Association of plasma level of malondialdehyde-modified low-density lipoprotein with coronary plaque morphology in patients with coronary spastic angina: implication of acute coronary events,” International Journal of Cardiology, vol. 135, no. 2, pp. 202–206, 2009.
[32]  G. Martínez-Sánchez, I. Popov, G. Pérez-Davison et al., “Contribution to characterization of oxidative stress in diabetic patients with macroangiopatic complications,” Acta Farmaceutica Bonaerense, vol. 24, no. 2, pp. 197–203, 2005.
[33]  J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969.
[34]  B. M. Babior, J. D. Lambeth, and W. Nauseef, “The neutrophil NADPH oxidase,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 342–344, 2002.
[35]  P. Stralin, K. Karlson, B. O. Johansson, and S. L. Marklund, “The interstitium of the human arterial wall contain very large amounts of extracellular superoxide dismutase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, pp. 32–36, 1995.
[36]  R. Ginnan, B. J. Guikema, K. E. Halligan, H. A. Singer, and D. Jourd'heuil, “Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases,” Free Radical Biology and Medicine, vol. 44, no. 7, pp. 1232–1245, 2008.
[37]  A. Deisseroth and A. L. Dounce, “Catalase: physical and chemical properties, mechanism of catalysis, and physiological role,” Physiological Reviews, vol. 50, no. 3, pp. 319–375, 1970.
[38]  S. J. Lin, S. K. Shyue, M. C. Shih et al., “Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors,” Atherosclerosis, vol. 190, no. 1, pp. 124–134, 2007.
[39]  M. R. Brown, F. J. Miller, W. G. Li et al., “Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells,” Circulation Research, vol. 85, no. 6, pp. 524–533, 1999.
[40]  M. L. Circu and T. Y. Aw, “Glutathione and apoptosis,” Free Radical Research, vol. 42, no. 8, pp. 689–706, 2008.
[41]  I. Rahman, S. K. Biswas, L. A. Jimenez, M. Torres, and H. J. Forman, “Glutathione, stress responses, and redox signaling in lung inflammation,” Antioxidants and Redox Signaling, vol. 7, no. 1-2, pp. 42–59, 2005.
[42]  T. Hiyash, K. Yano, H. Matusri, H. Yakao, Y. Hattori, and A. Igushi, “Nitric oxide and endothelial senescence,” Pharmacology ' Therapeutics, vol. 120, pp. 333–339, 2008.
[43]  P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133