全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

扩散蒙特卡罗反演方法及应用

Keywords: 扩散蒙特卡罗方法,全局寻优,非线性地震反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

?扩散蒙特卡罗方法是量子力学中研究多体系统的一种有效数值计算方法,具有较强非线性搜索能力,能够更好地求得全局最优解。本文将该方法从量子力学范畴引入到地震反演这样的经典系统,通过数值模拟试验验证了该方法的可行性。在此基础上,进行了实际地震资料的反演,获得了较好的反演结果,表明把扩散蒙特卡罗方法应用于地球物理反问题的求解是成功的,它适合于非线性、多极值的地球物理反演问题,在避免陷入局部极小等方面有着一定的优势。

References

[1]  黄绪德.反褶积与地震道反演.北京:石油工业出版社,1992[2]俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1993[3]李庆忠.走向精确勘探的道路.北京:石油工业出版社,1994[4]ceperley,m,alder,j.groundstateoftheelectrongasby,stochasticmethod[j].physrevlett.1980,45(7):566-569[5]hammond,l,lester,a,reynolds,j.montecarlomethodsinabinitioquantum,chemistry.singapore:worldscientitic,1994[6]anderson,b.,random-walksimulationoftheschrodingerequation:h3+.,chemphys,1975,63(4):499-1503[7]anderson,b.quantumchemistrybyrandomwalk[j].jchemphys.1976,65(10):4121-[8]reynolds,j,ceperley,m.fixed-nodequantummontecarloformolecules.,chemphys,1982,77(11):5593-5603[9]umrigar,j,nightingale,p,rungekj.adifusionmontecarloalgorithmwithverysmalltime-steperrors.,chemphys,1993,99(4):2865-2890[10]kosztini,faberb,schultenk.introductiontothediffusionmontecarlomethod.am,phys,1996,64(5):633-644[11]rapisardaf,senatoreg.diffusionmontecarlostudyofelectronsintwo-dimensionallayers.aust,phys,1996,49(1):161-182[12]pederivaf,umrigar,j,lipparinie.diffusionmontecarlostudyofcircularquantumdots[j].physrev.2000,62(12):8120-8125[13]anderson,b,diffusionandgreen,sfunctionquantummontecarlomethodsinquantumsimulationsofcomplexmany-bodysystems,fromtheorytoalgorithms(lecturenotes).2002,25-50[14]guclu,d,wang,s,guoh.disorderedquantumdots:adiffusionmontecarlostudy.physrevb,2003,68(3)[15]makrini,el,jourdainb,lelievret.diffusionmontecarlomethod:numericalanalysisin,simplecase[j].mathematicalmodelingandnumericalanalysis.2007,41(2):189-213[16]santoro,e,tosattie.optimizationusingquantummechanics:quantumannealingthroughadiabaticevolution[j].jphysa:mathgen.2006,39(36):393-431[17]anderson,b.quantumchemistrybyrandomwalk:higheraccuracy.,chemphys,1980,73(8):3897-3899[18]mentchf,anderson,b.quantumchemistrybyrandomwalk:importancesamplingforh3+.,chemphys,1981,74(11):6307-6311[19]alder,j,ceperley,m,reynolds,j.stochasticcalculationofinteractionenergies.,physchem,1982,86(7)1200-1204[20]moskowitz,w,kalos,h.,newlookatcorrelationsinatomicandmolecularsystemsi:applicationoffermionmontecarlovariationalmethod.ini,(quantumchem,1981,20(5):1107--1119[21]moskowitz,w,schmidt,e,leemaetal.montecarlovariationalstudyofbe:,surveyofcorrelatedwavefunctions.,chemphys,1982,76(2):1064-1067[22]曾谨言.量子力学(第三版).北京:科学出版社,2000[23]foulkes,mc,mitasl,needsrjetal.quantummontecarlosimulationsofsolids[j].revmodphys.2001,73(1):33-83[24]马文淦.计算物理学.北京:科学出版社,2005[25]alan,g,william,l.quantummontecarlomethodsforthesolutionoftheschrodingerequationformolecularsystems.handbookfornumericalanalysis.specialvolumeofcomputationalchemistry(10),2003:485-535[26]魏超,朱培民,王家映.量子退火反演的原理和实现[j].地球物理学报.2006,49(2):577-583[27]weichao,zhupei-min,wangjiang-ying.quantumannealinginversionanditsimplementation,chinesejournalofgeophysics,2006,49(2):577-583[28]pangt.anintroductiontocomputationalphysics.cambridgeuniversitypress,2006
[2]  黄绪德.反褶积与地震道反演.北京:石油工业出版社,1992
[3]  俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1993
[4]  李庆忠.走向精确勘探的道路.北京:石油工业出版社,1994
[5]  ceperley,m,alder,j.groundstateoftheelectrongasby,stochasticmethod[j].physrevlett.1980,45(7):566-569
[6]  hammond,l,lester,a,reynolds,j.montecarlomethodsinabinitioquantum,chemistry.singapore:worldscientitic,1994
[7]  anderson,b.,random-walksimulationoftheschrodingerequation:h3+.,chemphys,1975,63(4):499-1503
[8]  anderson,b.quantumchemistrybyrandomwalk[j].jchemphys.1976,65(10):4121-
[9]  reynolds,j,ceperley,m.fixed-nodequantummontecarloformolecules.,chemphys,1982,77(11):5593-5603
[10]  umrigar,j,nightingale,p,rungekj.adifusionmontecarloalgorithmwithverysmalltime-steperrors.,chemphys,1993,99(4):2865-2890
[11]  kosztini,faberb,schultenk.introductiontothediffusionmontecarlomethod.am,phys,1996,64(5):633-644
[12]  rapisardaf,senatoreg.diffusionmontecarlostudyofelectronsintwo-dimensionallayers.aust,phys,1996,49(1):161-182
[13]  pederivaf,umrigar,j,lipparinie.diffusionmontecarlostudyofcircularquantumdots[j].physrev.2000,62(12):8120-8125
[14]  anderson,b,diffusionandgreen,sfunctionquantummontecarlomethodsinquantumsimulationsofcomplexmany-bodysystems,fromtheorytoalgorithms(lecturenotes).2002,25-50
[15]  guclu,d,wang,s,guoh.disorderedquantumdots:adiffusionmontecarlostudy.physrevb,2003,68(3)
[16]  makrini,el,jourdainb,lelievret.diffusionmontecarlomethod:numericalanalysisin,simplecase[j].mathematicalmodelingandnumericalanalysis.2007,41(2):189-213
[17]  santoro,e,tosattie.optimizationusingquantummechanics:quantumannealingthroughadiabaticevolution[j].jphysa:mathgen.2006,39(36):393-431
[18]  anderson,b.quantumchemistrybyrandomwalk:higheraccuracy.,chemphys,1980,73(8):3897-3899
[19]  mentchf,anderson,b.quantumchemistrybyrandomwalk:importancesamplingforh3+.,chemphys,1981,74(11):6307-6311
[20]  alder,j,ceperley,m,reynolds,j.stochasticcalculationofinteractionenergies.,physchem,1982,86(7)1200-1204
[21]  moskowitz,w,kalos,h.,newlookatcorrelationsinatomicandmolecularsystemsi:applicationoffermionmontecarlovariationalmethod.ini,(quantumchem,1981,20(5):1107--1119
[22]  moskowitz,w,schmidt,e,leemaetal.montecarlovariationalstudyofbe:,surveyofcorrelatedwavefunctions.,chemphys,1982,76(2):1064-1067
[23]  曾谨言.量子力学(第三版).北京:科学出版社,2000
[24]  foulkes,mc,mitasl,needsrjetal.quantummontecarlosimulationsofsolids[j].revmodphys.2001,73(1):33-83
[25]  马文淦.计算物理学.北京:科学出版社,2005
[26]  alan,g,william,l.quantummontecarlomethodsforthesolutionoftheschrodingerequationformolecularsystems.handbookfornumericalanalysis.specialvolumeofcomputationalchemistry(10),2003:485-535
[27]  魏超,朱培民,王家映.量子退火反演的原理和实现[j].地球物理学报.2006,49(2):577-583
[28]  weichao,zhupei-min,wangjiang-ying.quantumannealinginversionanditsimplementation,chinesejournalofgeophysics,2006,49(2):577-583
[29]  pangt.anintroductiontocomputationalphysics.cambridgeuniversitypress,2006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133