全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

波动方程时空域有限差分数值解及吸收边界条件研究进展

Keywords: 波动方程,时空域有限差分,吸收边界条件,研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

?波动方程数值解是波动方程正演、逆时偏移和全波形反演的核心技术之一。本文对波动方程数值求解的有限差分技术和吸收边界条件进行了分析,重点总结了基于时空域频散关系的有限差分、自适应可变空间算子长度有限差分、优化有限差分及混合吸收边界条件等方法,介绍了这些方法在逆时偏移和波形反演中的应用。

References

[1]  virieuxj,calandrahandplessixr.areviewofthespectral,pseudo-spectral,finite-differenceandfinite-elementmodelingtechniquesforgeophysicalimaging.geophysicalprospecting,2011,59(5):794-813.
[2]  virieuxjandopertos.anoverviewoffull-wave-forminversioninexplorationgeophysics.geophy-sics,2009,74(6):wcc1-wcc26.
[3]  丁亮,刘洋.逆时偏移成像技术研究进展.地球物理学进展,2011,26(3):1085-1100.
[4]  dingliangandliuyang.progressinreversetimemigration.progressingeophysics,2011,26(3):1085-1100.
[5]  刘洋,李承楚,牟永光.任意偶数阶精度有限差分数值模拟.石油地球物理勘探,1998,33(1):1-10.
[6]  liuyang,lichengchuandmouyongguang.finite-differencenumericalmodelingofanyeven-orderaccuracy.ogp,1998,33(1):1-10.
[7]  zhangjianfeng.non-orthogonalgridfinite-differencemethodfornumericalsimulationofelasticwavepropagation.chinesejournalofgeophysics,1998,41(s1):357-366.
[8]  朱生旺,魏修成.波动方程非规则网格任意阶精度差分法正演[j].石油地球物理勘探.2005,40(2):149-153
[9]  zhushengwangandweixiucheng.differentialforwardmodelingofwaveequationhavingirregulargridandany-orderprecision.ogp,2005,40(2):149-153.
[10]  陈浩,王秀明,赵海波.旋转交错网格有限差分及其完全匹配层吸收边界条件[j].科学通报.2006,51(17):1985-1994
[11]  chenhao,wangxiumingandzhaohaibo.therotatedstaggered-gridfinitedifferenceandtheperfectlymatchedlayerabsorbingboundarycondition.chinesesciencebulletin,2006,51(17):1985-1994.
[12]  falkj,tessmereandgajewskid.efficientfinite-differencemodelingofseismicwavesusinglocallyadjustabletimestepsizes[j].geophysicalprospecting.1998,46(6):603-616
[13]  tessmere.seismicfinite-differencemodelingwithspatiallyvaryingtimesteps[j].geophysics.2000,65(4):1290-1293
[14]  liuyangandsenmk.apracticalimplicitfinite-differencemethod:examplesfromseismicmodeling[j].journalofgeophysicsandengineering.2009,6(3):231-249
[15]  etgenjtando'brienmj.computationalmethodsforlarge-scale3dacousticfinite-differencemodeling:atutorial.geophysics,2007,72(5):sm223-sm230.
[16]  zhangjinhaiandyaozhenxing.globallyoptimizedfinite-differenceextrapolatorforstronglyvtimedia.geophysics,2012,77(4):t125-t135.
[17]  holbergo.computationalaspectsofthechoiceofoperatorandsamplingintervalfornumericaldifferentiationinlarge-scalesimulationofwavephenomena.geophysicalprospecting,1987,35(6):625-655.
[18]  chenjingbo.astabilityformulaforlax-wendroffmethodswithfourth-orderintimeandgeneral-orderinspaceforthescalarwaveequation.geophysics,2011,76(2):t37-t42.
[19]  liuyangandsenmk.anewtime-spacedomainhigh-orderfinite-differencemethodfortheacousticwaveequation[j].journalofcomputationalphysics.2009,228(23):8779-8806
[20]  liuyangandsenmk.finite-differencemodelingwithadaptivevariable-lengthspatialoperators.geophysics,2011,76(4):t79-t89.
[21]  liuy.globallyoptimalfinite-differenceschemesbasedonleastsquares.geophysics,2013,78(4):t113-t132.
[22]  claytonrandengquistb.absorbingboundaryconditionsforacousticandelasticwaveequations.bulletinoftheseismologicalsocietyofamerica,1977,67(6):1529-1540.
[23]  reynoldsac.boundaryconditionsforthenumericalsolutionofwavepropagationproblems[j].geophysics.1978,43(6):1099-1110
[24]  kosloffrandkosloffd.absorbingboundariesforwavepropagationproblems[j].journalofcomputatio-nalphysics.1986,63(2):363-376
[25]  caoshunhuaandgreenhalghs.attenuatingboundaryconditionsfornumericalmodelingofacousticwavepropagation[j].geophysics.1998,63(1):231-243
[26]  zengy,hejandliuh.theapplicationoftheperfectlymatchedlayerinnumericalmodelingofwavepropagationinporoelasticmedia[j].geophysics.2001,66(4):1258-1266
[27]  huwenyi,abubakaraandhabashytm.applicationofthenearlyperfectlymatchedlayerinacousticwavemodeling.geophysics,2007,72(5):sm169-sm175.
[28]  gaohongweiandzhangjianfeng.implementationofperfectlymatchedlayersinanarbitrarygeometricalboundaryforelasticwavemodeling[j].geophysicaljournalinternational.2008,174(3):1029-1036
[29]  liuyangandsenmk.ahybridschemeforabsor-bingedgereflectionsinnumericalmodelingofwavepropagation.geophysics,2010,75(2):a1-a6.
[30]  liuyangandsenmk.3dacousticwavemodelingwithtime-spacedomaindispersion-relation-basedfinite-differenceschemesandhybridabsorbingboundaryconditions[j].explorationgeophysics.2011,42(3):176-189
[31]  zhangxi,liuyangandrenzhiming.ahybridabsorbingboundaryconditionwithawwesforfinite-differencemodeling.segtechnicalprogramexpandedabstracts,2013,32:3439-3443.
[32]  liuyangandsenmk.ahybridabsorbingboundaryconditionforelasticstaggered-gridmodeling[j].geophysicalprospecting.2012,60(6):1114-1132
[33]  renzhimingandliuyang.ahybridabsorbingboundaryconditionforfrequency-domainfinite-diffe-rencemodeling[j].journalofgeophysicsandenginee-ring.2013,10(5):054003-
[34]  严红勇,刘洋.基于时空域自适应高阶有限差分的声波叠前逆时偏移.地球物理学报,2013,56(3):971-984
[35]  renzhimingandliuyang.multi-scalefullwave-forminversionusingthesecondgenerationwavelet.75theageconferenceextendedabstracts,2013,wp1010.
[36]  etgenj,grayshandzhangy.anoverviewofdepthimaginginexplorationgeophysics.geophy-sics,2009,74(6):wca5-wca17.
[37]  冯英杰,杨长春,吴萍.地震波有限差分模拟综述[j].地球物理学进展.2007,22(2):487-491
[38]  fengyingjie,yangchangchunandwuping.thereviewofthefinite-differenceelasticwavemotionmo-deling.progressingeophysics,2007,22(2):487-491.
[39]  cerjanc,kosloffd,kosloffronnieetal.anonreflectingboundaryconditionfordiscreteacousticandelasticwaveequations[j].geophysics.1985,50(4):705-708
[40]  wangyandschustergt.finite-differencevariablegridschemeforacousticandelasticwaveequationmodeling.segtechnicalprogramexpandedabstracts,1996,15:674-677.
[41]  opr?aliandzahradníkj.elasticfinite-differencemethodforirregulargrids[j].geophysics.1999,64(1):240-250
[42]  张剑锋.弹性波数值模拟的非规则网格差分方法.地球物理学报,1998,41(增刊1):357-366.
[43]  virieuxj.sh-wavepropagationinheterogeneousmedia:velocity-stressfinite-differencemethod[j].geophysics.1984,49(11):1933-1957
[44]  virieuxj.p-svwavepropagationinheterogeneousmedia:velocitystressfinitedifferencemethod[j].geophysics.1986,51(4):889-901
[45]  董良国,马在田,曹景忠等.一阶弹性波方程交错网格高阶差分解法.地球物理学报,2000,43(3):411-419.
[46]  dongliangguo,mazaitian,caojingzhongetal.astaggered-gridhigh-orderdifferencemethodofone-orderelasticwaveequation.chinesejournalofgeophysics,2000,43(3):411-419.
[47]  裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[j].石油地球物理勘探.2004,39(6):629-634
[48]  peizhenglin.numericalmodelingusingstaggered-gridhighorderfinite-differenceofelasticwaveequationonarbitraryreliefsurface.ogp,2004,39(6):629-634.
[49]  zhangjianfeng.quadrangle-gridvelocity-stressfi-nite-differencemethodforelastic-wave-propagationsimulation.geophysicaljournalinternational,2007,131(1):127-134.
[50]  saengereh,goldnandshapirosa.modelingthepropagationofelasticwavesusingamodifiedfinite-differencegrid[j].wavemotion.2000,31(1):77-92
[51]  saengerehandbohlent.finite-differencemode-lingofviscoelasticandanisotropicwavepropagationusingtherotatedstaggeredgrid[j].geophysics.2004,69(2):583-591
[52]  黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟.地球物理学报,2009,52(1):176-186.
[53]  huangchaoanddongliangguo.high-orderfinite-differencemethodinseismicwavesimulationwithvariablegridsandlocaltime-steps[j].chinesejournalofgeophysics.2009,52(1):176-186
[54]  emermans,schmidtwandstephenr.animplicitfinite-differenceformulationoftheelasticwaveequation[j].geophysics.1982,47(11):1521-1526
[55]  ristowdandrühlt.3-dimplicitfinite-differencemigrationbymultiwaysplitting[j].geophysics.1997,62(2):554-567
[56]  lelesk.compactfinitedifferenceschemeswithspectral-likeresolution[j].journalofcomputationalphysics.1992,103(1):16-42
[57]  duqizhen,libinandhoubo.numericalmodelingofseismicwavefieldsintransverselyisotropicmediawithacompactstaggered-gridfinitedifferencescheme[j].appliedgeophysics.2009,6(1):42-49
[58]  zhouhongboandzhangguanquan.prefactoredoptimizedcompactfinite-differenceschemesforsecondspatialderivatives.geophysics,2011,76(5):wb87-wb95.
[59]  liuyangandsenmk.animplicitstaggered-gridfinite-differencemethodforseismicmodeling[j].geophysicaljournalinternational.2009,179(1):459-474
[60]  chenjingbo.high-ordertimediscretizationsinseismicmodeling.geophysics,2007,72(5):sm115-sm122.
[61]  dablainma.theapplicationofhigh-orderdifferencingtothescalarwaveequation[j].geophysics.1986,51(1):54-66
[62]  fornbergb.thepseudospectralmethod-compari-sonswithfinitedifferencesfortheelasticwaveequation[j].geophysics.1987,52(4):483-501
[63]  zhangjinhaiandyaozhenxing.optimizedfinite-differenceoperatorforbroadbandseismicwavemod-eling.geophysics,2013,78(1):a13-a18.
[64]  finkelsteinbandkastnerr.finitedifferencetimedomaindispersionreductionschemes[j].journalofcomputationalphysics.2007,221(1):422-438
[65]  liuyangandsenmk.acousticvtimodelingwithatime-spacedomaindispersion-relation-basedfinite-differencescheme.geophysics,2010,75(3):a7-a13.
[66]  liuyangandsenmk.time-spacedomainfinite-differencemethodwitharbitraryeven-orderaccuracyforthe2dacousticwaveequation[j].journalofcomputationalphysics.2013,232(1):327-345
[67]  liuyangandsenmk.scalarwaveequationmodelingwithtime-spacedomaindispersion-relation-basedstaggered-gridfinite-differenceschemes[j].bulletinoftheseismologicalsocietyofamerica.2011,101(1):141-159
[68]  engquistbandmajdaa.absorbingboundaryconditionsfornumericalsimulationofwaves[j].mathematicsofcomputation.1977,31(139):629-651
[69]  liaozhengpeng,wenghlandyangbaipoetal.atransmittingboundaryfortransientwaveanalysis.scientiasinicaseriesa,1984,27(10):1063-1076.
[70]  murg.absorbingboundaryconditionsforthefinite-differenceapproximationofthetime-domainelectromagneticfieldequations[j].ieeetransactionsonelectromagneticcompatibility.1981,emc-23(4):377-382
[71]  keysrg.absorbingboundaryconditionsforacousticmedia[j].geophysics.1985,50(6):892-902
[72]  zhouhongboandmcmechanga.rigorousabsorbingboundaryconditionsfor3-done-waywaveextrapolation[j].geophysics.2000,65(2):638-645
[73]  heidariahandguddatimn.highlyaccurateabsorbingboundaryconditionsforwide-anglewaveequations.geophysics,2006,71(3):s85-s97.
[74]  tianxiaobo,kangib,kimgyetal.animprovementintheabsorbingboundarytechniquefornumericalsimulationofelasticwavepropagation[j].journalofgeophysicsandengineering.2008,5(2):203-209
[75]  bérengerj.aperfectlymatchedlayerfortheabsorptionofelectromagneticwaves[j].journalofcomputationalphysics.1994,114(2):185-200
[76]  komatitschdandtrompj.aperfectlymatchedlayerabsorbingboundaryconditionforthesecond-orderseismicwaveequation[j].geophysicaljournalinternational.2003,154(1):146-153
[77]  wangtandtangx.finite-differencemodelingofelasticwavepropagation:anonsplittingperfectlymatchedlayerapproach[j].geophysics.2003,68(5):1749-1755
[78]  yanhongyongandliuyang.acousticprestackreversetimemigrationwiththeadaptivehigh-orderfinite-differencemethodintime-spacedomain.chinesejournalofgeophysics,2013,56(3):971-984.
[79]  yanhongyongandliuyang.visco-acousticpre-stackreverse-timemigrationbasedontime-spacedomainadaptivehigh-orderfinite-differencemethod[j].geophysicalprospecting.2013,61(5):941-954
[80]  yanhongyongandliuyang.pre-stackreverse-timemigrationbasedonthetime-spacedomainadaptivehigh-orderfinite-differencemethodinacousticvtimedium[j].journalofgeophysicsandengineering.2013,10(1):015010-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133