全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A study on the early detection of colon cancer using the methods of wavelet feature extraction and SVM classifications of FTIR

DOI: 10.3233/spe-2008-0352

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces a new method for the early detection of colon cancer using a combination of feature extraction based on wavelets for Fourier Transform Infrared Spectroscopy (FTIR) and classification using the Support Vector Machine (SVM). The FTIR data collected from 36 normal SD rats, 60 1,2-DMH-induced SD rats, and 44 second generation rats of those induced rats was first preprocessed. Then, 12 feature variants were extracted using continuous wavelet analysis. The extracted feature variants were then inputted into the SVM for classification of normal, dysplasia, early carcinoma, and advanced carcinoma. Among the kernel functions the SVM used, the Poly and RBF kernels had the highest accuracy rates. The accuracy of the Poly kernel in normal, dysplasia, early carcinoma, and advanced carcinoma were 100, 97.5, 95% and 100% respectively. The accuracy of RBF kernel in normal, dysplasia, early carcinoma, and advanced carcinoma was 100, 95, 95% and 100% respectively. The results indicated that this method could effectively and easily diagnose colon cancer in its early stages.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133