全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位场向下延拓的波数域正则—积分迭代法

Keywords: 向下延拓,波数域,迭代法,正则参数,l-曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文将正则方法与积分迭代法相结合,提出波数域正则—积分迭代法用于位场向下延拓。该迭代法以位场正则向下延拓值为迭代初值,并用正则向下延拓算子处理迭代过程中的剩余谱,使得在加快迭代收敛的同时,压制噪声谱,以提高延拓的稳定性;计算了改进迭代法的最优步长,对比分析了改进迭代法的收敛性和滤波特性,同时提出采用l-曲线准则计算正则向下延拓的正则参数,并将其扩展到波数域以提高计算速度和适应波数域迭代法。基于理论模型和航磁数据的对比试验分析表明,改进迭代法位场向下延拓的精度、稳定性及收敛速度都有提高,其延拓效果优于现有广义逆法、积分迭代法、泰勒级数迭代法和landweber迭代法。

References

[1]  徐世浙.位场延拓的积分-迭代法.地球物理学报2006,49(4):1176-1182xushizhe.theintegral-iterationmethodforcontinuanonofpotentialfield.chinesejgeophys,2006,49(4):1176-1182
[2]  xushizhe,yangjinyu,yangchangfuetal.theit-rationmethodfordownwardcontinuationofapoten-tialfieldfromahorizontalplane[j].geophsicalpros-pectzng.2007,55(6):883-889
[3]  王顺杰,朱海,栾禄雨.水下地磁导航中位场积分迭代法收敛性分析.地球物理学进展,2009,24(3):1095-1097wangshunjie,zhuhai,luanluyu.constringcncyanalysisoftheiterationmethodforcontinuationofpotentialfieldsinunderwatergeomagnetismnaviga-tion.progressingeophys,2009,21(3):1095-1097
[4]  张辉,陈龙伟,任治新等.位场向下延拓迭代法收敛性分析及稳健向下延拓方法研究.地球物理学报,2009,52(4):1107-1113zhanghui,chenlongwci,renzhixinetal.analy-sisonconvergenceofiterationmethodforpotentialfieldsdownwardcontinuationandresearchonrobustdownwardcontinuationmethod.chinesejgeophys,2009,52(4):1107-1113
[5]  刘东甲,洪天求,贾志海等.位场向下延拓的波数域迭代法及其收敛性.地球物理学报,2009,52(6):1600-1605liudongjia,hongtianqiu,jiazhihaietal.wavenumberdomainiterationmethodfordownwardofpo-tentialfieldsanditsconvergence.chinesejgeophys,2009,52(6):1599-1605
[6]  于波,翟国君,刘雁春等.噪声对向下延拓迭代法的计算误差影响分析.地球物理学报,2009,52(8):2182-2188yuyo,zhaiuuojun,liuyanchunetal.analysisofnoiseeffectonthecalculationerrorofdownwardcon-tinuationwithiterationmethod.chinesejgeophys,2009,52(8):2182-2188
[7]  骆遥.位场迭代法向下延拓的地球物理含义—以可下延异常逐次分离过程为例.地球物理学进展,2011,26(4):1197-1200luoyao.geophysicalimplicationsoftheiterationmethodfordownwardcontinuationofpotentialfield:acasebycomputingregionalanomalycanbecontin-ueddownward.progressingeophys,2011,26(4):1197-1200
[8]  侯重初.补偿圆滑滤波方法.石油物探,1981,20(2);22-29houzhongchu.filteringofsmoothcompensation.gpp,1981,20(2):22-29
[9]  曾小牛,李夕海,刘代志等.积分迭代法的正则性分析及其最优步长的选择.地球物理学报,2011,54(11);2943-2950zengxiaoniu,lixihai,liudaizhietal.rcgulariza-tionanalysisofintegraliterationmethodandthechoiceofitsoptimalstep-length.chinesejgeophys,2011,54(11);2943-2950
[10]  曾小牛,李夕海,韩绍卿等.位场向下延拓三种迭代方法之比较.地球物理学进展,2011,26(3);908-915zengxiaoniu,lixihai,hanshaoqingetal.acom-parisonofthreeiterationmethodsfordownwardcon-tinuationofpotentialfields.progressingeophys,2011,26(3):908-914
[11]  陈龙伟,徐世浙,胡小平等.位场向下延拓的迭代最小-乘法.地球物理学进展,2011,26(3):894-901chenlongwei,xushizhe,huxiaopingetal.theiterativeleastsquaremethodfordownwardcontinua-tionofpotentialfields.progressingeophys,2011,26(3):894-901
[12]  chenlw,liuc,huxpetal.anoveliterativeapproachfordownwardcontinuationofpotentialfields.fourthinternationaljointconferenceoncomputationalsciencesandoptimization,2011,947-951
[13]  王彦国,张凤旭,王祝文等.位场向下延拓的泰勒级数迭代法[j].石油地球物理勘探.2011,46(4):657-662??浏览
[14]  梁锦文.位场向下延拓的正则化方法[j].地球物理学报.1989,32(5):600-608
[15]  陈生昌,肖鹏飞.位场向下延拓的波数域广义逆算法[j].地球物理学报.2007,50(6):1816-1822
[16]  nashedmz.steepestdescentforsingularlinearop-cratorequations[j].siamjournalonnumericalanal-yszs.1970,7(3):358-362
[17]  王彦飞.反演问题的计算方法及其应用.北京:高等教育出版社,2007
[18]  morozovva.methodsforsolvingincor,ectlyposedproblems.newyork:springcr-verlag,1984
[19]  golubgh,heathm,wahbag.gencralizcdcross-validationasamethodforchoosingagoodridgepa-ramcter.technometrics,1979,(21);215-223
[20]  hanscnpc,o'lcarydp.theuseofthel-curveintheregularizationofdiscreteill-posedproblems[j].si-amjscicomput.1993,14(6):1487-1503
[21]  王兴涛,石磐,朱非洲.航空重力测量数据向下延拓的正则化算法及谱分析.测绘学报,2004,33(1);33-38wangxingtao,shipan,zhufcizhou.regularizationmethodsandspectraldecompositionforthedown-wardcontinuationofairbornegravitydata.actageo-daeticaetcartographicasinica,2004,33(1):33-38
[22]  reginskataregularizationparameterindiscreteill-posedproblems.siamjscicomput,1996,17(3):740-749

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133