OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响
Keywords: 军曹鱼幼鱼,酵母蛋白,玉米蛋白,碳、氮稳定同位素,同位素分馏
Abstract:
?为研究饲料中不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响,配制3种等氮等能饲料。d1以鱼粉为蛋白源,d2和d3饲料中分别以啤酒酵母和玉米蛋白替代10%的鱼粉蛋白,投喂幼鱼24d。结果表明,啤酒酵母和玉米蛋白替代10%的鱼粉蛋白后,幼鱼的体质量增加率显著下降。随养殖时间的延长,所有处理组幼鱼的碳稳定同位素比率δ13c逐渐上升而氮稳定同位素比率δ15n逐渐下降;虽然全鱼和肌肉δ15n的变化速度存在差异,但各饲料组全鱼和肌肉的δ13c和δ15n都在24d后与饲料达到平衡。当饲料中10%的鱼粉蛋白被啤酒酵母和玉米蛋白替代之后,幼鱼肌肉和全鱼样品与饲料相比的碳同位素富集δ13c值下降,而氮同位素富集δ15n值则上升。其中全鱼δ13c从4.19‰分别下降到3.94‰和3.63‰,肌肉δ13c从4.46‰分别下降到3.98‰和3.67‰;全鱼δ15n从0.18‰分别增加到0.88‰和0.94‰,肌肉δ15n从0.18‰分别增加到0.74‰和0.87‰。军曹鱼在摄食3种不同蛋白源饲料时,其全鱼和肌肉的δ13c和δ15n的变化趋势相似,但全鱼δ15n的变化速度慢于肌肉。据此可推断,肌肉可在生态学营养级研究(长时间尺度)中代表军曹鱼的碳、氮同位素特征;但在代谢生理学研究中(短时间尺度),肌肉就无法准确反映军曹鱼全鱼的δ15n变化过程。
References
[1] | 张淑芳,唐启升,等.2003.鲈鱼新陈代谢过程中的碳氮稳定同位素分馏作用[j].海洋科学进展,21(3):308–317.[2]李忠义,金显仕,等.2007.采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[j].海洋学报:中文版,29(2):98–104.[3]左涛,戴芳群,等.2009.长江口及南黄海水域春季生物摄食生态的稳定同位素研究[j].水产学报,33(5):784–789.[4]欧帆,颜云榕.2009.应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究[j].海洋学报:中文版,31(3):167–174.[5]陈刚,林小涛.2012.三种蛋白源部分替代鱼粉对军曹鱼幼鱼生长和体成分的影响[j].水产科学,31(6):311–315.[6]rk,parkerpl,lawrenceaa.1987.13c/12ctracerstudyoftheutilizationofpresentedfeedbyacommerciallyimportantshrimppenaeusvannameiinapondgrowoutsystem[j].jworldaquacultsoc,18(3):148–155.[7]a,latourrj.2010.turnoverandfractionationofcarbonandnitrogenstableisotopesintissuesofamigratorycoastalpredator,summerflounder(paralichthysdentatus)[j].canjfishaquatsci,67(3):445–461.[8]mj,epsteins.1978.influenceofdietonthedistributionofcarbonisotoperatiosinanimals[j].geochimcosmochimacta,42:495–506.[9]mj,epsteins.1981.influenceofdietonthedistributionofnitrogenisotopesinanimals[j].geochimcosmochimacta,45:341–351.[10]b,arnoldc.1982.rapid13c/12cturnoverduringgrowthofbrownshrimp(penaeusaztecus)[j].oecologia,54(2):200–204.[11]b.2006.stableisotopeecology[m].newyork:springerscience:196.gamboa-delgadoj,caÑavatejp,zerolor,etal.2008.naturalcarbonstableisotoperatiosasindicatorsoftherelativecontributionofliveandinertdietstogrowthinlarvalsenegalesesole(soleasenegalensis)[j].aquaculture,280(1):190–197.[12]j,lewislv.2009.naturalstableisotopesasindicatorsoftherelativecontributionofsoyproteinandfishmealtotissuegrowthinpacificwhiteshrimp(litopenaeusvannamei)fedcompounddiets[j].aquaculture,291(1/2):115–123.[13]rh,hallardka,ramlalp.1993.replacementofsulfur,carbon,andnitrogenintissueofgrowingbroadwhitefish(coregonusnasus)inresponsetoachangeindiettracedby34s,13c,and15n[j].canjfishaquatsci,50(10):2071–2076.[14]ka,clarkrg.1992.assessingaviandietsusingstableisotopes1:turnoverof13cintissues[j].condor,94(1):181–188.[15]delrioc,wolfbo.2005.mass-balancemodelsforanimalisotopicecology[m]//starckjm,wangt.physiologicalandecologicaladaptationstofeedinginvertebrates.enfield:sciencepublishers:141–174.[16]bj,fryb.1987.stableisotopesinecosystemstudies[j].annrevecolsyst,18:293–320.[17]aj,karenab,alanbb.2007.stablecarbonandnitrogenisotopediscriminationandturnoverinpondsliderstrachemysscripta:insightsfortrophicstudyoffreshwaterturtles[j].copeia,(3):534–542.[18]kw,kasaia,nakayamak,etal.2005.differentialisotopicenrichmentandhalf-lifeamongtissuesinjapanesetemperatebass(lateolabraxjaponicus)juveniles:implica-tionsforanalyzingmigration[j].canjfishaquatsci,62(3):671–678.[19]c,barryj,barnesc,etal.2007.effectsofbodysizeandenvironmentondiet-tissueδ15nfractionationinfishes[j].jexpmarbiolecol,340(1):1–10.[20]derzandenmj,hulshofm,ridgwayms,etal.1998.applicationofstableisotopetechniquestotrophicstudiesofage-0smallmouthbass[j].transamfishsoc,127(5):729–739.[21]y,damienb,mariellet,etal.2007.stableisotopevariabilityintissuesoftheeurasianperchpercafluviatilis[j].compbiochemphys,148(3):504–509.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|