全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Emerging Views on the CTD Code

DOI: 10.1155/2012/347214

Full-Text   Cite this paper   Add to My Lib

Abstract:

The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the “CTD code” hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a “code.” Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges. 1. Introduction The transcription of DNA to RNA in eukaryotes is catalyzed by three structurally related RNA polymerases, with each acting on a different class of genes [1]. RNA polymerase I synthesizes most of the ribosomal RNA (rRNA) subunits while RNA polymerase III synthesizes tRNAs, 5S rRNA, and other small RNAs [2–4]. These two polymerases account for 75% and 15% of transcription in the cell, respectively [5]. However, the most studied polymerase is RNA Polymerase II (Pol II), which is responsible for the transcription of protein-coding genes, small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) [6–8]. In higher eukaryotes, Pol II generates long noncoding RNA (lncRNA) and microRNA (miRNA) [9, 10]. Pol II also transcribes cryptic unstable transcripts (CUTs) and stable unannotated transcripts (SUTs), which are degraded after synthesis [11–13]. The suppression of CUTs is important to prevent inappropriate transcription within ORFs, to enhance processivity during transcription elongation, and to prevent gene silencing via histone deacetylation [14–18]. Of the twelve Pol II subunits, five are common between the three polymerases [1, 19–21]. It is believed that the specific functions attributed to each polymerase arise from the combined action of remaining nonidentical subunits and other factors that associate with them. An especially unique feature of Pol II is the carboxy-terminal domain (CTD) of its large subunit Rpb1 (Figure 1(a)). The CTD serves as the primary point of

References

[1]  P. Cramer, K. J. Armache, S. Baumli et al., “Structure of eukaryotic RNA polymerases,” Annual Review of Biophysics, vol. 37, pp. 337–352, 2008.
[2]  I. Grummt, “Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus,” Genes & Development, vol. 17, no. 14, pp. 1691–1702, 2003.
[3]  J. Russell and J. C. B. M. Zomerdijk, “RNA-polymerase-I-directed rDNA transcription, life and works,” Trends in Biochemical Sciences, vol. 30, no. 2, pp. 87–96, 2005.
[4]  G. Dieci, G. Fiorino, M. Castelnuovo, M. Teichmann, and A. Pagano, “The expanding RNA polymerase III transcriptome,” Trends in Genetics, vol. 23, no. 12, pp. 614–622, 2007.
[5]  M. Werner, P. Thuriaux, and J. Soutourina, “Structure-function analysis of RNA polymerases I and III,” Current Opinion in Structural Biology, vol. 19, no. 6, pp. 740–745, 2009.
[6]  F. Wyers, M. Rougemaille, G. Badis et al., “Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase,” Cell, vol. 121, no. 5, pp. 725–737, 2005.
[7]  C. A. Davis and M. Ares, “Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3262–3267, 2006.
[8]  S. Lykke-Andersen and T. H. Jensen, “Overlapping pathways dictate termination of RNA polymerase II transcription,” Biochimie, vol. 89, no. 10, pp. 1177–1182, 2007.
[9]  M. Faller and F. Guo, “MicroRNA biogenesis: there's more than one way to skin a cat,” Biochimica et Biophysica Acta, vol. 1779, no. 11, pp. 663–667, 2008.
[10]  M. Guttman, I. Amit, M. Garber et al., “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals,” Nature, vol. 458, no. 7235, pp. 223–227, 2009.
[11]  J. T. Arigo, D. E. Eyler, K. L. Carroll, and J. L. Corden, “Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3,” Molecular Cell, vol. 23, no. 6, pp. 841–851, 2006.
[12]  M. Thiebaut, E. Kisseleva-Romanova, M. Rougemaille, J. Boulay, and D. Libri, “Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance,” Molecular Cell, vol. 23, no. 6, pp. 853–864, 2006.
[13]  S. Y. Ying and S. L. Lin, “Intron-mediated RNA interference and microRNA biogenesis,” Methods in Molecular Biology, vol. 487, pp. 387–413, 2009.
[14]  C. D. Kaplan, L. Laprade, and F. Winston, “Transcription elongation factors repress transcription initiation from cryptic sites,” Science, vol. 301, no. 5636, pp. 1096–1099, 2003.
[15]  J. Camblong, N. Iglesias, C. Fickentscher, G. Dieppois, and F. Stutz, “Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae,” Cell, vol. 131, no. 4, pp. 706–717, 2007.
[16]  F. De Santa, I. Barozzi, F. Mietton et al., “A large fraction of extragenic RNA Pol II transcription sites overlap enhancers,” PLoS Biology, vol. 8, no. 5, Article ID e1000384, 2010.
[17]  U. A. ?rom, T. Derrien, M. Beringer et al., “Long noncoding RNAs with enhancer-like function in human cells,” Cell, vol. 143, no. 1, pp. 46–58, 2010.
[18]  F. Sato, S. Tsuchiya, S. J. Meltzer, and K. Shimizu, “MicroRNAs and epigenetics,” FEBS Journal, vol. 278, no. 10, pp. 1598–1609, 2011.
[19]  R. A. Young, “RNA polymerase II,” Annual Review of Biochemistry, vol. 60, pp. 689–715, 1991.
[20]  N. Woychik and R. Young, “Exploring RNA polymerase II structure and function,” in Transcription: Mechanisms and Regulation, R. C. Conaway and J. W. Conaway, Eds., pp. 227–242, Raven Press, New York, NY, USA, 1994.
[21]  G. V. Shpakovski, J. Acker, M. Wintzerith, J. F. Lacroix, P. Thuriaux, and M. Vigneron, “Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 15, no. 9, pp. 4702–4710, 1995.
[22]  Y. Hirose and J. L. Manley, “RNA polymerase II and the integration of nuclear events,” Genes & Development, vol. 14, no. 12, pp. 1415–1429, 2000.
[23]  R. J. Sims, R. Belotserkovskaya, and D. Reinberg, “Elongation by RNA polymerase II: the short and long of it,” Genes & Development, vol. 18, no. 20, pp. 2437–2468, 2004.
[24]  H. P. Phatnani and A. L. Greenleaf, “Phosphorylation and functions of the RNA polymerase II CTD,” Genes & Development, vol. 20, no. 21, pp. 2922–2936, 2006.
[25]  R. D. Kornberg, “The molecular basis of eukaryotic transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 12955–12961, 2007.
[26]  Y. Hirose and Y. Ohkuma, “Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression,” Journal of Biochemistry, vol. 141, no. 5, pp. 601–608, 2007.
[27]  S. Egloff and S. Murphy, “Cracking the RNA polymerase II CTD code,” Trends in Genetics, vol. 24, no. 6, pp. 280–288, 2008.
[28]  B. J. Venters and B. F. Pugh, “How eukaryotic genes are transcribed regulation of eukaroytic gene transcription,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 2-3, pp. 117–141, 2009.
[29]  S. Buratowski, “Progression through the RNA Polymerase II CTD Cycle,” Molecular Cell, vol. 36, no. 4, pp. 541–546, 2009.
[30]  R. Perales and D. Bentley, “‘Cotranscriptionality’: the transcription elongation complex as a nexus for nuclear transactions,” Molecular Cell, vol. 36, no. 2, pp. 178–191, 2009.
[31]  P. Richard and J. L. Manley, “Transcription termination by nuclear RNA polymerases,” Genes & Development, vol. 23, no. 11, pp. 1247–1269, 2009.
[32]  S. Nechaev and K. Adelman, “Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation,” Biochimica et Biophysica Acta, vol. 1809, no. 1, pp. 34–45, 2010.
[33]  J. L. Corden, D. L. Cadena, J. M. Ahearn, and M. E. Dahmus, “A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 23, pp. 7934–7938, 1985.
[34]  J. L. Corden, “Tails of RNA polymerase II,” Trends in Biochemical Sciences, vol. 15, no. 10, pp. 383–387, 1990.
[35]  R. D. Chapman, M. Heidemann, C. Hintermair, and D. Eick, “Molecular evolution of the RNA polymerase II CTD,” Trends in Genetics, vol. 24, no. 6, pp. 289–296, 2008.
[36]  P. Liu, J. M. Kenney, J. W. Stiller, and A. L. Greenleaf, “Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain,” Molecular Biology and Evolution, vol. 27, no. 11, pp. 2628–2641, 2010.
[37]  Q. Zeidan and G. W. Hart, “The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways,” Journal of Cell Science, vol. 123, no. 1, pp. 13–22, 2010.
[38]  S. M. Fuchs, R. N. Laribee, and B. D. Strahl, “Protein modifications in transcription elongation,” Biochimica et Biophysica Acta, vol. 1789, no. 1, pp. 26–36, 2009.
[39]  R. J. Sims III, L. A. Rojas, D. Beck et al., “The C-terminal domain of RNA polymerase II is modified by site-specific methylation,” Science, vol. 332, no. 6025, pp. 99–103, 2011.
[40]  S. Buratowski, “The CTD code,” Nature Structural Biology, vol. 10, no. 9, pp. 679–680, 2003.
[41]  T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001.
[42]  A. G. Pedersen, P. Baldi, Y. Chauvin, and S. Brunak, “The biology of eukaryotic promoter prediction—a review,” Computers and Chemistry, vol. 23, no. 3-4, pp. 191–207, 1999.
[43]  A. D. Basehoar, S. J. Zanton, and B. F. Pugh, “Identification and distinct regulation of yeast TATA box-containing genes,” Cell, vol. 116, no. 5, pp. 699–709, 2004.
[44]  G. C. Yuan, Y. J. Liu, M. F. Dion et al., “Genome-scale identification of nucleosome positions in S. cerevisiae,” Science, vol. 309, no. 5734, pp. 626–630, 2005.
[45]  B. J. Venters and B. F. Pugh, “A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome,” Genome Research, vol. 19, no. 3, pp. 360–371, 2009.
[46]  G. Orphanides, T. Lagrange, and D. Reinberg, “The general transcription factors of RNA polymerase II,” Genes & Development, vol. 10, no. 21, pp. 2657–2683, 1996.
[47]  S. J. Zanton and B. F. Pugh, “Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock,” Genes & Development, vol. 20, no. 16, pp. 2250–2265, 2006.
[48]  J. Q. Svejstrup, Y. Li, J. Fellows, A. Gnatt, S. Bjorklund, and R. D. Kornberg, “Evidence for a mediator cycle at the initiation of transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6075–6078, 1997.
[49]  L. C. Myers and R. D. Kornberg, “Mediator of transcriptional regulation,” Annual Review of Biochemistry, vol. 69, pp. 729–749, 2000.
[50]  R. D. Kornberg, “Mediator and the mechanism of transcriptional activation,” Trends in Biochemical Sciences, vol. 30, no. 5, pp. 235–239, 2005.
[51]  S. Malik and R. G. Roeder, “Dynamic regulation of pol II transcription by the mammalian Mediator complex,” Trends in Biochemical Sciences, vol. 30, no. 5, pp. 256–263, 2005.
[52]  J. S. Kang, S. H. Kim, M. S. Hwang, S. J. Han, Y. C. Lee, and Y. J. Kim, “The structural and functional organization of the yeast mediator complex,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 42003–42010, 2001.
[53]  T. Borggrefe, R. Davis, H. Erdjument-Bromage, P. Tempst, and R. D. Kornberg, “A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 44202–44207, 2002.
[54]  B. Guglielmi, N. L. van Berkum, B. Klapholz et al., “A high resolution protein interaction map of the yeast Mediator complex,” Nucleic Acids Research, vol. 32, no. 18, pp. 5379–5391, 2004.
[55]  J. Z. Chadick and F. J. Asturias, “Structure of eukaryotic Mediator complexes,” Trends in Biochemical Sciences, vol. 30, no. 5, pp. 264–271, 2005.
[56]  A. Casamassimi and C. Napoli, “Mediator complexes and eukaryotic transcription regulation: an overview,” Biochimie, vol. 89, no. 12, pp. 1439–1446, 2007.
[57]  á. Toth-Petroczy, C. J. Oldfield, I. Simon et al., “Malleable machines in transcription regulation: the Mediator complex,” PLoS Computational Biology, vol. 4, no. 12, Article ID e1000243, 2008.
[58]  R. Biddick and E. T. Young, “Yeast Mediator and its role in transcriptional regulation,” Comptes Rendus Biologies, vol. 328, no. 9, pp. 773–782, 2005.
[59]  S. Bjorklund and C. M. Gustafsson, “The yeast Mediator complex and its regulation,” Trends in Biochemical Sciences, vol. 30, no. 5, pp. 240–244, 2005.
[60]  R. C. Conaway, S. Sato, C. Tomomori-Sato, T. Yao, and J. W. Conaway, “The mammalian Mediator complex and its role in transcriptional regulation,” Trends in Biochemical Sciences, vol. 30, no. 5, pp. 250–255, 2005.
[61]  X. Fan, D. M. Chou, and K. Struhl, “Activator-specific recruitment of Mediator in vivo,” Nature Structural & Molecular Biology, vol. 13, no. 2, pp. 117–120, 2006.
[62]  X. Fan and K. Struhl, “Where does mediator bind in vivo?” PLoS One, vol. 4, no. 4, Article ID e5029, 2009.
[63]  M. E. Maxon, J. A. Goodrich, and R. Tjian, “Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance,” Genes & Development, vol. 8, no. 5, pp. 515–524, 1994.
[64]  C. Esnault, Y. Ghavi-Helm, S. Brun et al., “Mediator-dependent recruitment of TFIIH modules in preinitiation complex,” Molecular Cell, vol. 31, no. 3, pp. 337–346, 2008.
[65]  A. J. Koleske and R. A. Young, “An RNA polymerase II holoenzyme responsive to activators,” Nature, vol. 368, no. 6470, pp. 466–469, 1994.
[66]  S. M. Liao, J. Zhang, D. A. Jeffery et al., “A kinase-cyclin pair in the RNA polymerase II holoenzyme,” Nature, vol. 374, no. 6518, pp. 193–196, 1995.
[67]  C. J. Hengartner, C. M. Thompson, J. Zhang et al., “Association of an activator with an RNA polymerase II holoenzyme,” Genes & Development, vol. 9, no. 8, pp. 897–910, 1995.
[68]  A. Barberis, J. Pearlberg, N. Simkovich et al., “Contact with a component of the polymerase II holoenzyme suffices for gene activation,” Cell, vol. 81, no. 3, pp. 359–368, 1995.
[69]  D. M. Chao, E. L. Gadbois, P. J. Murray et al., “A mammalian SRB protein associated with an RNA polymerase II holoenzyme,” Nature, vol. 380, no. 6569, pp. 82–85, 1996.
[70]  A. J. Koleske and R. A. Young, “The RNA polymerase II holoenzyme and its implications for gene regulation,” Trends in Biochemical Sciences, vol. 20, no. 3, pp. 113–116, 1995.
[71]  K. J. Armache, H. Kettenberger, and P. Cramer, “Architecture of initiation-competent 12-subunit RNA polymerase II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6964–6968, 2003.
[72]  A. Meinhart, T. Kamenski, S. Hoeppner, S. Baumli, and P. Cramer, “A structural perspective of CTD function,” Genes & Development, vol. 19, no. 12, pp. 1401–1415, 2005.
[73]  K. Xiang, T. Nagaike, S. Xiang et al., “Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex,” Nature, vol. 467, no. 7316, pp. 729–733, 2010.
[74]  J. W. Werner-Allen, C. -J. Lee, P. Liu et al., “cis-proline-mediated ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72,” Journal of Biological Chemistry, vol. 286, no. 7, pp. 5717–5726, 2011.
[75]  A. Meinhart and P. Cramer, “Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors,” Nature, vol. 430, no. 6996, pp. 223–226, 2004.
[76]  W. G. Kelly, M. E. Dahmus, and G. W. Hart, “RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10416–10424, 1993.
[77]  M. E. Kang and M. E. Dahmus, “The photoactivated cross-linking of recombinant C-terminal domain to proteins in a HeLa cell transcription extract that comigrate with transcription factors IIE and IIF,” Journal of Biological Chemistry, vol. 270, no. 40, pp. 23390–23397, 1995.
[78]  A. Usheva, E. Maldonado, A. Goldring et al., “Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein,” Cell, vol. 69, no. 5, pp. 871–881, 1992.
[79]  L. C. Myers, C. M. Gustafsson, D. A. Bushnell et al., “The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain,” Genes & Development, vol. 12, no. 1, pp. 45–54, 1998.
[80]  E. J. Cho, T. Takagi, C. R. Moore, and S. Buratowski, “mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain,” Genes & Development, vol. 11, no. 24, pp. 3319–3326, 1997.
[81]  C. Fabrega, V. Shen, S. Shuman, and C. D. Lima, “Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II,” Molecular Cell, vol. 11, no. 6, pp. 1549–1561, 2003.
[82]  C. K. Ho and S. Shuman, “Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme,” Molecular Cell, vol. 3, no. 3, pp. 405–411, 1999.
[83]  P. Komarnitsky, E. J. Cho, and S. Buratowski, “Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription,” Genes & Development, vol. 14, no. 19, pp. 2452–2460, 2000.
[84]  S. McCracken, N. Fong, E. Rosonina et al., “5-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II,” Genes & Development, vol. 11, no. 24, pp. 3306–3318, 1997.
[85]  S. C. Schroeder, B. Schwer, S. Shuman, and D. Bentley, “Dynamic association of capping enzymes with transcribing RNA polymerase II,” Genes & Development, vol. 14, no. 19, pp. 2435–2440, 2000.
[86]  H. H. Ng, F. Robert, R. A. Young, and K. Struhl, “Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity,” Molecular Cell, vol. 11, no. 3, pp. 709–719, 2003.
[87]  C. K. Govind, H. Qiu, D. S. Ginsburg et al., “Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes,” Molecular Cell, vol. 39, no. 2, pp. 234–246, 2010.
[88]  S. Drouin, L. Laramée, P. E. Jacques, A. Forest, M. Bergeron, and F. Robert, “DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes,” PLoS Genetics, vol. 6, no. 10, Article ID e1001173, pp. 1–12, 2010.
[89]  S. M. Yoh, H. Cho, L. Pickle, R. M. Evans, and K. A. Jones, “The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export,” Genes & Development, vol. 21, no. 2, pp. 160–174, 2007.
[90]  L. Vasiljeva, M. Kim, H. Mutschler, S. Buratowski, and A. Meinhart, “The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain,” Nature Structural & Molecular Biology, vol. 15, no. 8, pp. 795–804, 2008.
[91]  J. S. Finkel, K. Chinchilla, D. Ursic, and M. R. Culbertson, “Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae,” Genetics, vol. 184, no. 1, pp. 107–118, 2010.
[92]  A. Daulny, F. Geng, M. Muratani, J. M. Geisinger, S. E. Salghetti, and W. P. Tansey, “Modulation of RNA polymerase II subunit composition by ubiquitylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19649–19654, 2008.
[93]  D. P. Morris, H. P. Phatnani, and A. L. Greenleaf, “Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-end formation,” Journal of Biological Chemistry, vol. 274, no. 44, pp. 31583–31587, 1999.
[94]  X. Wu, C. B. Wilcox, G. Devasahayam et al., “The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery,” The EMBO Journal, vol. 19, no. 14, pp. 3727–3738, 2000.
[95]  K. O. Kizer, H. P. Phatnani, Y. Shibata, H. Hall, A. L. Greenleaf, and B. D. Strahl, “A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation,” Molecular and Cellular Biology, vol. 25, no. 8, pp. 3305–3316, 2005.
[96]  E. Vojnic, B. Simon, B. D. Strahl, M. Sattler, and P. Cramer, “Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 13–15, 2006.
[97]  D. P. Morris and A. L. Greenleaf, “The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA Polymerase II,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 39935–39943, 2000.
[98]  J. L. Dermody, J. M. Dreyfuss, J. Villén et al., “Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation,” PLoS One, vol. 3, no. 9, Article ID e3273, 2008.
[99]  C. G. Noble, D. Hollingworth, S. R. Martin et al., “Key features of the interaction between Pcf11 CID and RNA polymerase II CTD,” Nature Structural & Molecular Biology, vol. 12, no. 2, pp. 144–151, 2005.
[100]  D. Hollingworth, C. G. Noble, I. A. Taylor, and A. Ramos, “RNA polymerase II CTD phosphopeptides compete with RNA for the interaction with Pcf11,” RNA, vol. 12, no. 4, pp. 555–560, 2006.
[101]  D. Barillà, B. A. Lee, and N. J. Proudfoot, “Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 445–450, 2001.
[102]  A. Kyburz, M. Sadowski, B. Dichtl, and W. Keller, “The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation,” Nucleic Acids Research, vol. 31, no. 14, pp. 3936–3945, 2003.
[103]  B. Dichtl, D. Blank, M. Sadowski, W. Hübner, S. Weiser, and W. Keller, “Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination,” The EMBO Journal, vol. 21, no. 15, pp. 4125–4135, 2002.
[104]  C. R. Rodriguez, E. J. Cho, M. C. Keogh, C. L. Moore, A. L. Greenleaf, and S. Buratowski, “Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II,” Molecular and Cellular Biology, vol. 20, no. 1, pp. 104–112, 2000.
[105]  M. Kim, N. J. Krogan, L. Vasiljeva et al., “The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II,” Nature, vol. 432, no. 7016, pp. 517–522, 2004.
[106]  P. Pascual-García, C. K. Govind, E. Queralt et al., “Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2,” Genes & Development, vol. 22, no. 20, pp. 2811–2822, 2008.
[107]  A. L. MacKellar and A. L. Greenleaf, “Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II,” Journal of Biological Chemistry, vol. 286, no. 42, pp. 36385–36395, 2011.
[108]  A. Chang, S. Cheang, X. Espanel, and M. Sudol, “Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II,” Journal of Biological Chemistry, vol. 275, no. 27, pp. 20562–20571, 2000.
[109]  B. P. Somesh, J. Reid, W. F. Liu et al., “Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest,” Cell, vol. 121, no. 6, pp. 913–923, 2005.
[110]  H. P. Phatnani, J. C. Jones, and A. L. Greenleaf, “Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome,” Biochemistry, vol. 43, no. 50, pp. 15702–15719, 2004.
[111]  J. Q. Svejstrup, W. J. Feaver, J. LaPointe, and R. D. Kornberg, “RNA polymerase transcription factor IIH holoenzyme from yeast,” Journal of Biological Chemistry, vol. 269, no. 45, pp. 28044–28048, 1994.
[112]  J. Q. Svejstrup, Z. Wang, W. J. Feaver et al., “Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome,” Cell, vol. 80, no. 1, pp. 21–28, 1995.
[113]  C. J. Hengartner, V. E. Myer, S. M. Liao, C. J. Wilson, S. S. Koh, and R. A. Young, “Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases,” Molecular Cell, vol. 2, no. 1, pp. 43–53, 1998.
[114]  V. E. Myer and R. A. Young, “RNA polymerase II holoenzymes and subcomplexes,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 27757–27760, 1998.
[115]  F. Tirode, D. Busso, F. Coin, and J. M. Egly, “Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7,” Molecular Cell, vol. 3, no. 1, pp. 87–95, 1999.
[116]  W. H. Chang and R. D. Kornberg, “Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH,” Cell, vol. 102, no. 5, pp. 609–613, 2000.
[117]  Y. Takagi, C. A. Masuda, W. H. Chang et al., “Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage,” Molecular Cell, vol. 18, no. 2, pp. 237–243, 2005.
[118]  G. Rabut, G. Le Dez, R. Verma et al., “The TFIIH subunit Tfb3 regulates cullin neddylation,” Molecular Cell, vol. 43, no. 3, pp. 488–495, 2011.
[119]  M. E. Dahmus, “Reversible phosphorylation of the C-terminal domain of RNA polymerase II,” Journal of Biological Chemistry, vol. 271, no. 32, pp. 19009–19012, 1996.
[120]  O. Bensaude, F. Bonnet, C. Cassé, M. F. Dubois, V. T. Nguyen, and B. Palancade, “Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD),” Biochemistry and Cell Biology, vol. 77, no. 4, pp. 249–255, 1999.
[121]  B. Palancade and O. Bensaude, “Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation,” European Journal of Biochemistry, vol. 270, no. 19, pp. 3859–3870, 2003.
[122]  W. J. Feaver, J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg, “Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK,” Cell, vol. 79, no. 6, pp. 1103–1109, 1994.
[123]  P. Rickert, J. L. Corden, and E. Lees, “Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases,” Oncogene, vol. 18, no. 4, pp. 1093–1102, 1999.
[124]  M. M. Gebara, M. H. Sayre, and J. L. Corden, “Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription,” Journal of Cellular Biochemistry, vol. 64, no. 3, pp. 390–402, 1997.
[125]  A. Munshi, G. Shafi, N. Aliya, and A. Jyothy, “Histone modifications dictate specific biological readouts,” Journal of Genetics and Genomics, vol. 36, no. 2, pp. 75–88, 2009.
[126]  J. S. Lee, E. Smith, and A. Shilatifard, “The language of histone crosstalk,” Cell, vol. 142, no. 5, pp. 682–685, 2010.
[127]  J. L. Workman, “Nucleosome displacement in transcription,” Genes & Development, vol. 20, no. 15, pp. 2009–2017, 2006.
[128]  S. Nakanishi, B. W. Sanderson, K. M. Delventhal, W. D. Bradford, K. Staehling-Hampton, and A. Shilatifard, “A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation,” Nature Structural & Molecular Biology, vol. 15, no. 8, pp. 881–888, 2008.
[129]  A. Wood, J. Schneider, J. Dover, M. Johnston, and A. Shilatifard, “The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 34739–34742, 2003.
[130]  P. Cramer, D. A. Bushnell, and R. D. Kornberg, “Structural basis of transcription: RNA polymerase II at 2.8 ?ngstrom resolution,” Science, vol. 292, no. 5523, pp. 1863–1876, 2001.
[131]  A. Ghosh, S. Shuman, and C. Lima, “Structural insights to how Mammalian capping enzyme reads the CTD code,” Molecular Cell, vol. 43, no. 2, pp. 299–310, 2011.
[132]  N. Fong and D. L. Bentley, “Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD,” Genes & Development, vol. 15, no. 14, pp. 1783–1795, 2001.
[133]  S. Moteki and D. Price, “Functional coupling of capping and transcription of mRNA,” Molecular Cell, vol. 10, no. 3, pp. 599–609, 2002.
[134]  Y. Liu, C. Kung, J. Fishburn, A. Z. Ansari, K. M. Shokat, and S. Hahn, “Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex,” Molecular and Cellular Biology, vol. 24, no. 4, pp. 1721–1735, 2004.
[135]  E. I. Kanin, R. T. Kipp, C. Kung et al., “Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5812–5817, 2007.
[136]  B. Schwer and S. Shuman, “Deciphering the RNA polymerase II CTD code in fission yeast,” Molecular Cell, vol. 43, no. 2, pp. 311–318, 2011.
[137]  S. W. Hong, M. H. Seong, W. Y. Jae et al., “Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14276–14280, 2009.
[138]  J. R. Tietjen, D. W. Zhang, J. B. Rodríguez-Molina et al., “Chemical-genomic dissection of the CTD code,” Nature Structural & Molecular Biology, vol. 17, no. 9, pp. 1154–1161, 2010.
[139]  M. S. Akhtar, M. Heidemann, J. R. Tietjen et al., “TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II,” Molecular Cell, vol. 34, no. 3, pp. 387–393, 2009.
[140]  M. Kim, H. Suh, E. J. Cho, and S. Buratowski, “Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2,5, and 7,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26421–26426, 2009.
[141]  K. Glover-Cutter, S. Larochelle, B. Erickson et al., “TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II,” Molecular and Cellular Biology, vol. 29, no. 20, pp. 5455–5464, 2009.
[142]  S. Boeing, C. Rigault, M. Heidemann, D. Eick, and M. Meisterernst, “RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion,” Journal of Biological Chemistry, vol. 285, no. 1, pp. 188–196, 2010.
[143]  Z. Songyang, K. P. Lu, Y. T. Kwon et al., “A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1,” Molecular and Cellular Biology, vol. 16, no. 11, pp. 6486–6493, 1996.
[144]  R. D. Chapman, M. Heidemann, T. K. Albert et al., “Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7,” Science, vol. 318, no. 5857, pp. 1780–1782, 2007.
[145]  S. Egloff, D. O'Reilly, R. D. Chapman et al., “Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression,” Science, vol. 318, no. 5857, pp. 1777–1779, 2007.
[146]  A. Mayer, M. Lidschreiber, M. Siebert, K. Leike, J. S?ding, and P. Cramer, “Uniform transitions of the general RNA polymerase II transcription complex,” Nature Structural & Molecular Biology, vol. 17, no. 10, pp. 1272–1278, 2010.
[147]  G. A. Hartzog, T. Wada, H. Handa, and F. Winston, “Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae,” Genes & Development, vol. 12, no. 3, pp. 357–369, 1998.
[148]  F. W. Martinez-Rucobo, S. Sainsbury, A. C.M. Cheung, and P. Cramer, “Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity,” The EMBO Journal, vol. 30, no. 7, pp. 1302–1310, 2011.
[149]  D. Grohmann, J. Nagy, A. Chakraborty et al., “The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation,” Molecular Cell, vol. 43, no. 2, pp. 263–274, 2011.
[150]  M. W. Adkins and J. K. Tyler, “Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions,” Molecular Cell, vol. 21, no. 3, pp. 405–416, 2006.
[151]  M. L. Youdell, K. O. Kizer, E. Kisseleva-Romanova et al., “Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36,” Molecular and Cellular Biology, vol. 28, no. 16, pp. 4915–4926, 2008.
[152]  G. Orphanides, W. H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg, “The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins,” Nature, vol. 400, no. 6741, pp. 284–288, 1999.
[153]  A. Jamai, A. Puglisi, and M. Strubin, “Histone chaperone Spt16 promotes redeposition of the original H3-H4 histones evicted by elongating RNA polymerase,” Molecular Cell, vol. 35, no. 3, pp. 377–383, 2009.
[154]  L. Zhang, A. G. L. Fletcher, V. Cheung, F. Winston, and L. A. Stargell, “Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II,” Molecular and Cellular Biology, vol. 28, no. 4, pp. 1393–1403, 2008.
[155]  S. M. McDonald, D. Close, H. Xin, T. Formosa, and C. P. Hill, “Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding,” Molecular Cell, vol. 40, no. 5, pp. 725–735, 2010.
[156]  D. Prather, N. J. Krogan, A. Emili, J. F. Greenblatt, and F. Winston, “Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 25, no. 22, pp. 10122–10135, 2005.
[157]  J. A. Jaehning, “The Paf1 complex: platform or player in RNA polymerase II transcription?” Biochimica et Biophysica Acta, vol. 1799, pp. 379–388, 2010.
[158]  V. Brès, S. M. Yoh, and K. A. Jones, “The multi-tasking P-TEFb complex,” Current Opinion in Cell Biology, vol. 20, no. 3, pp. 334–340, 2008.
[159]  B. M. Peterlin and D. H. Price, “Controlling the elongation phase of transcription with P-TEFb,” Molecular Cell, vol. 23, no. 3, pp. 297–305, 2006.
[160]  D. H. Price, “P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II,” Molecular and Cellular Biology, vol. 20, no. 8, pp. 2629–2634, 2000.
[161]  L. Viladevall, C. V. S. Amour, A. Rosebrock et al., “TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast,” Molecular Cell, vol. 33, no. 6, pp. 738–751, 2009.
[162]  K. Zhou, W. H. W. Kuo, J. Fillingham, and J. F. Greenblatt, “Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 6956–6961, 2009.
[163]  A. Wood, J. Schneider, J. Dover, M. Johnston, and A. Shilatifard, “The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS,” Molecular Cell, vol. 20, no. 4, pp. 589–599, 2005.
[164]  J. C. Jones, H. P. Phatnani, T. A. Haystead, J. A. MacDonald, S. M. Alam, and A. L. Greenleaf, “C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNa polymerase II C-terminal domain repeats,” Journal of Biological Chemistry, vol. 279, no. 24, pp. 24957–24964, 2004.
[165]  J. B. Kim and P. A. Sharp, “Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 12317–12323, 2001.
[166]  H. Qiu, C. Hu, and A. G. Hinnebusch, “Phosphorylation of the pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters,” Molecular Cell, vol. 33, no. 6, pp. 752–762, 2009.
[167]  A. L. Mosley, S. G. Pattenden, M. Carey et al., “Rtr1 Is a CTD phosphatase that regulates RNA polymerase II during the transition from Serine 5 to Serine 2 phosphorylation,” Molecular Cell, vol. 34, no. 2, pp. 168–178, 2009.
[168]  M. S. Kobor, J. Archambault, W. Lester et al., “An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae,” Molecular Cell, vol. 4, no. 1, pp. 55–62, 1999.
[169]  E. J. Cho, M. S. Kobor, M. Kim, J. Greenblatt, and S. Buratowski, “Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain,” Genes & Development, vol. 15, no. 24, pp. 3319–3329, 2001.
[170]  K. W. Henry, A. Wyce, W. S. Lo et al., “Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8,” Genes & Development, vol. 17, no. 21, pp. 2648–2663, 2003.
[171]  A. Wyce, T. Xiao, K. A. Whelan et al., “H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex,” Molecular Cell, vol. 27, no. 2, pp. 275–288, 2007.
[172]  D. Bentley, “Coupling RNA polymerase II transcription with pre-mRNA processing,” Current Opinion in Cell Biology, vol. 11, no. 3, pp. 347–351, 1999.
[173]  D. Bentley, “The mRNA assembly line: transcription and processing machines in the same factory,” Current Opinion in Cell Biology, vol. 14, no. 3, pp. 336–342, 2002.
[174]  D. D. Licatalosi, G. Geiger, M. Minet et al., “Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II,” Molecular Cell, vol. 9, no. 5, pp. 1101–1111, 2002.
[175]  N. J. Proudfoot, A. Furger, and M. J. Dye, “Integrating mRNA processing with transcription,” Cell, vol. 108, no. 4, pp. 501–512, 2002.
[176]  S. H. Ahn, M. Kim, and S. Buratowski, “Phosphorylation of Serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing,” Molecular Cell, vol. 13, no. 1, pp. 67–76, 2004.
[177]  D. L. Bentley, “Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors,” Current Opinion in Cell Biology, vol. 17, no. 3, pp. 251–256, 2005.
[178]  S. Buratowski, “Connections between mRNA 3′ end processing and transcription termination,” Current Opinion in Cell Biology, vol. 17, no. 3, pp. 257–261, 2005.
[179]  J. Li, D. Moazed, and S. P. Gygi, “Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49383–49388, 2002.
[180]  N. J. Krogan, M. Kim, A. Tong et al., “Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II,” Molecular and Cellular Biology, vol. 23, no. 12, pp. 4207–4218, 2003.
[181]  B. Li, L. Howe, S. Anderson, J. R. Yates, and J. L. Workman, “The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 8897–8903, 2003.
[182]  M. J. Carrozza, B. Li, L. Florens et al., “Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription,” Cell, vol. 123, no. 4, pp. 581–592, 2005.
[183]  M. C. Keogh, S. K. Kurdistani, S. A. Morris et al., “Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex,” Cell, vol. 123, no. 4, pp. 593–605, 2005.
[184]  W. Gilbert, C. W. Siebel, and C. Guthrie, “Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation,” RNA, vol. 7, no. 2, pp. 302–313, 2001.
[185]  E. P. Lei, H. Krebber, and P. A. Silver, “Messenger RNAs are recruited for nuclear export during transcription,” Genes & Development, vol. 15, no. 14, pp. 1771–1782, 2001.
[186]  M. E. Bucheli and S. Buratowski, “Npl3 is an antagonist of mRNA 3′ end formation by RNA polymerase II,” The EMBO Journal, vol. 24, no. 12, pp. 2150–2160, 2005.
[187]  M. E. Bucheli, X. He, C. D. Kaplan, C. L. Moore, and S. Buratowski, “Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI,” RNA, vol. 13, no. 10, pp. 1756–1764, 2007.
[188]  N. J. Proudfoot, “Ending the message: poly(A) signals then and now,” Genes & Development, vol. 25, no. 17, pp. 1770–1782, 2011.
[189]  M. Kim, S. H. Ahn, N. J. Krogan, J. F. Greenblatt, and S. Buratowski, “Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes,” The EMBO Journal, vol. 23, no. 2, pp. 354–364, 2004.
[190]  S. Connelly and J. L. Manley, “A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II,” Genes & Development, vol. 2, no. 4, pp. 440–452, 1988.
[191]  S. West, N. Gromak, and N. J. Proudfoot, “Human 5′ → 3′ exonuclease Xm2 promotes transcription termination at co-transcriptional cleavage sites,” Nature, vol. 432, no. 7016, pp. 522–525, 2004.
[192]  B. M. Lunde, S. L. Reichow, M. Kim et al., “Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain,” Nature Structural & Molecular Biology, vol. 17, no. 10, pp. 1195–1201, 2010.
[193]  Z. Zhang, J. Fu, and D. S. Gilmour, “CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11,” Genes & Development, vol. 19, no. 13, pp. 1572–1580, 2005.
[194]  M. Sadowski, B. Dichtl, W. Hübner, and W. Keller, “Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination,” The EMBO Journal, vol. 22, no. 9, pp. 2167–2177, 2003.
[195]  M. Kim, L. Vasiljeva, O. J. Rando, A. Zhelkovsky, C. Moore, and S. Buratowski, “Distinct pathways for snoRNA and mRNA termination,” Molecular Cell, vol. 24, no. 5, pp. 723–734, 2006.
[196]  H. Kim, B. Erickson, W. Luo et al., “Gene-specific RNA polymerase II phosphorylation and the CTD code,” Nature Structural & Molecular Biology, vol. 17, no. 10, pp. 1279–1286, 2010.
[197]  C. E. Birse, L. Minvielle-Sebastia, B. A. Lee, W. Keller, and N. J. Proudfoot, “Coupling termination of transcription to messenger RNA maturation in yeast,” Science, vol. 280, no. 5361, pp. 298–301, 1998.
[198]  R. K. Gudipati, T. Villa, J. Boulay, and D. Libri, “Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice,” Nature Structural & Molecular Biology, vol. 15, no. 8, pp. 786–794, 2008.
[199]  E. J. Steinmetz, N. K. Conrad, D. A. Brow, and J. L. Corden, “RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts,” Nature, vol. 413, no. 6853, pp. 327–331, 2001.
[200]  N. Terzi, L. S. Churchman, L. Vasiljeva, J. Weissman, and S. Buratowski, “H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway,” Molecular and Cellular Biology, vol. 31, no. 17, pp. 3569–3583, 2011.
[201]  E. J. Steinmetz and D. A. Brow, “Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1,” Molecular and Cellular Biology, vol. 16, no. 12, pp. 6993–7003, 1996.
[202]  E. J. Steinmetz and D. A. Brow, “Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6699–6704, 1998.
[203]  N. K. Conrad, S. M. Wilson, E. J. Steinmetz et al., “A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II,” Genetics, vol. 154, no. 2, pp. 557–571, 2000.
[204]  K. L. Carroll, D. A. Pradhan, J. A. Granek, N. D. Clarke, and J. L. Corden, “Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts,” Molecular and Cellular Biology, vol. 24, no. 14, pp. 6241–6252, 2004.
[205]  K. L. Carroll, R. Ghirlando, J. M. Ames, and J. L. Corden, “Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements,” RNA, vol. 13, no. 3, pp. 361–373, 2007.
[206]  F. Hobor, R. Pergoli, K. Kubicek et al., “Recognition of transcription termination signal by the nuclear polyadenylated RNA-binding (NAB) 3 protein,” Journal of Biological Chemistry, vol. 286, no. 5, pp. 3645–3657, 2011.
[207]  W. Wlotzka, G. Kudla, S. Granneman, and D. Tollervey, “The nuclear RNA polymerase II surveillance system targets polymerase III transcripts,” The EMBO Journal, vol. 30, no. 9, pp. 1790–1803, 2011.
[208]  D. Ursic, K. L. Himmel, K. A. Gurley, F. Webb, and M. R. Culbertson, “The yeast SEN1 gene is required for the processing of diverse RNA classes,” Nucleic Acids Research, vol. 25, no. 23, pp. 4778–4785, 1997.
[209]  K. Skourti-Stathaki, N. Proudfoot, and N. Gromak, “Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination,” Molecular Cell, vol. 42, no. 6, pp. 794–805, 2011.
[210]  H. E. Mischo, B. Gómez-González, P. Grzechnik et al., “Yeast Sen1 helicase protects the genome from transcription-associated instability,” Molecular Cell, vol. 41, no. 1, pp. 21–32, 2011.
[211]  E. Nedea, D. Nalbant, D. Xia et al., “The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes,” Molecular Cell, vol. 29, no. 5, pp. 577–587, 2008.
[212]  G. Chanfreau, P. Legrain, and A. Jacquier, “Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism,” Journal of Molecular Biology, vol. 284, no. 4, pp. 975–988, 1998.
[213]  G. Chanfreau, G. Rotondo, P. Legrain, and A. Jacquier, “Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1,” The EMBO Journal, vol. 17, no. 13, pp. 3726–3737, 1998.
[214]  C. Allmang, J. Kufel, G. Chanfreau, P. Mitchell, E. Petfalski, and D. Tollervey, “Functions of the exosome in rRNA, snoRNA and snRNA synthesis,” The EMBO Journal, vol. 18, no. 19, pp. 5399–5410, 1999.
[215]  J. LaCava, J. Houseley, C. Saveanu et al., “RNA degradation by the exosome is promoted by a nuclear polyadenylation complex,” Cell, vol. 121, no. 5, pp. 713–724, 2005.
[216]  D. E. Egecioglu, A. K. Henras, and G. F. Chanfreau, “Contributions of Trf4p- And Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome,” RNA, vol. 12, no. 1, pp. 26–32, 2006.
[217]  L. Vasiljeva and S. Buratowski, “Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts,” Molecular Cell, vol. 21, no. 2, pp. 239–248, 2006.
[218]  D. Baillat, M. A. Hakimi, A. M. N??r, A. Shilatifard, N. Cooch, and R. Shiekhattar, “Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II,” Cell, vol. 123, no. 2, pp. 265–276, 2005.
[219]  S. Egloff, S. A. Szczepaniak, M. Dienstbier, A. Taylor, S. Knight, and S. Murphy, “The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain,” Journal of Biological Chemistry, vol. 285, no. 27, pp. 20564–20569, 2010.
[220]  L. Minvielle-Sebastia, P. J. Preker, and W. Keller, “RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3'-end processing factor,” Science, vol. 266, no. 5191, pp. 1702–1705, 1994.
[221]  M. J. Moore, “From birth to death: the complex lives of eukaryotic mRNAs,” Science, vol. 309, no. 5740, pp. 1514–1518, 2005.
[222]  E. Nedea, X. He, M. Kim et al., “Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33000–33010, 2003.
[223]  A. Ansari and M. Hampsey, “A role for the CPF 3′ -end processing machinery in RNAP II-dependent gene looping,” Genes & Development, vol. 19, no. 24, pp. 2969–2978, 2005.
[224]  E. J. Steinmetz and D. A. Brow, “Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription,” Molecular and Cellular Biology, vol. 23, no. 18, pp. 6339–6349, 2003.
[225]  S. Krishnamurthy, X. He, M. Reyes-Reyes, C. Moore, and M. Hampsey, “Ssu72 is an RNA polymerase II CTD phosphatase,” Molecular Cell, vol. 14, no. 3, pp. 387–394, 2004.
[226]  S. Krishnamurthy, M. A. Ghazy, C. Moore, and M. Hampsey, “Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries,” Molecular and Cellular Biology, vol. 29, no. 11, pp. 2925–2934, 2009.
[227]  M. A. Ghazy, X. He, B. N. Singh, M. Hampsey, and C. Moore, “The essential N terminus of the pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3'-end processing,” Molecular and Cellular Biology, vol. 29, no. 8, pp. 2296–2307, 2009.
[228]  N. Singh, Z. Ma, T. Gemmill et al., “The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway,” Molecular Cell, vol. 36, no. 2, pp. 255–266, 2009.
[229]  J. Archambault, R. S. Chambers, M. S. Kobor et al., “An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14300–14305, 1997.
[230]  S. E. Kong, M. S. Kobor, N. J. Krogan et al., “Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4299–4306, 2005.
[231]  S. Hausmann, H. Erdjument-Bromage, and S. Shuman, “Schizosaccharomyces pombe carboxyl-terminal domain (CTD) phosphatase Fcp1,” Journal of Biological Chemistry, vol. 279, no. 12, pp. 10892–10900, 2004.
[232]  A. Ghosh, S. Shuman, and C. D. Lima, “The structure of Fcp1, an essential RNA polymerase II CTD phosphatase,” Molecular Cell, vol. 32, no. 4, pp. 478–490, 2008.
[233]  K. L. Abbott, M. B. Renfrow, M. J. Chalmers et al., “Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation,” Biochemistry, vol. 44, no. 8, pp. 2732–2745, 2005.
[234]  D. W. Zhang, A. L. Mosley, S. R. Ramisetty, et al., “Ssu72 phosphatase dependent erasure of phospho-Ser7 marks on the RNA Polymerase II C-terminal domain is essential for viability and transcription termination,” Journal of Biological Chemistry. In press.
[235]  H. Cho, T. K. Kim, H. Mancebo, W. S. Lane, O. Flores, and D. Reinberg, “A protein phosphatase functions to recycle RNA polymerase II,” Genes & Development, vol. 13, no. 12, pp. 1540–1552, 1999.
[236]  B. Dichtl, D. Blank, M. Ohnacker et al., “A role for SSU72 in balancing RNA polymerase II transcription elongation and termination,” Molecular Cell, vol. 10, no. 5, pp. 1139–1150, 2002.
[237]  J. M. O'Sullivan, S. M. Tan-Wong, A. Morillon et al., “Gene loops juxtapose promoters and terminators in yeast,” Nature Genetics, vol. 36, no. 9, pp. 1014–1018, 2004.
[238]  B. N. Singh, A. Ansari, and M. Hampsey, “Detection of gene loops by 3C in yeast,” Methods, vol. 48, no. 4, pp. 361–367, 2009.
[239]  B. N. Singh and M. Hampsey, “A transcription-independent role for TFIIB in gene looping,” Molecular Cell, vol. 27, no. 5, pp. 806–816, 2007.
[240]  P. Vinciguerra and F. Stutz, “mRNA export: an assembly line from genes to nuclear pores,” Current Opinion in Cell Biology, vol. 16, no. 3, pp. 285–292, 2004.
[241]  A. K?hler and E. Hurt, “Exporting RNA from the nucleus to the cytoplasm,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 761–773, 2007.
[242]  M. Stewart, “Nuclear export of mRNA,” Trends in Biochemical Sciences, vol. 35, no. 11, pp. 609–617, 2010.
[243]  A. Segref, K. Sharma, V. Doye et al., “Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores,” The EMBO Journal, vol. 16, no. 11, pp. 3256–3271, 1997.
[244]  D. Jani, S. Lutz, N. J. Marshall et al., “Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export,” Molecular Cell, vol. 33, no. 6, pp. 727–737, 2009.
[245]  J. M. Huibregtse, J. C. Yang, and S. L. Beaudenon, “The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3656–3661, 1997.
[246]  S. L. Beaudenon, M. R. Huacani, G. Wang, D. P. McDonnell, and J. M. Huibregtse, “Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 6972–6979, 1999.
[247]  G. F. Heine, A. A. Horwitz, and J. D. Parvin, “Multiple mechanisms contribute to inhibit transcription in response to DNA damage,” Journal of Biological Chemistry, vol. 283, no. 15, pp. 9555–9561, 2008.
[248]  S. Buratowski, “The CTD code,” Protein Science, vol. 6, pp. 249–253, 1997.
[249]  R. Baskaran, S. R. Escobar, and J. Y. J. Wang, “Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine kinase- specific for the mammalian RNA polymerase II: possible role in transcription elongation,” Cell Growth & Differentiation, vol. 10, no. 6, pp. 387–396, 1999.
[250]  H. Sakurai and A. Ishihama, “Level of the RNA polymerase II in the fission yeast stays constant but phosphorylation of its carboxyl terminal domain varies depending on the phase and rate of cell growth,” Genes to Cells, vol. 7, no. 3, pp. 273–284, 2002.
[251]  Lewis B. A., “O-GlcNAc modification of the CTD of human RNA Polymerase II is an intermediate step occurring prior to transcription initiation,” unpublished data.
[252]  M. L. West and J. L. Corden, “Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations,” Genetics, vol. 140, no. 4, pp. 1223–1233, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133