|
物理化学学报 2014
基于序列特征筛选与支持向量回归预测蛋白质折叠速率Keywords: 蛋白质折叠,折叠速率预测,高维特征,特征筛选,支持向量回归 Abstract: 折叠速率预测对阐明蛋白质折叠机理意义重大.本文收集了115条目前已知折叠速率的蛋白质样本(包括二态、多态和混态蛋白),为了较全面地表征蛋白质分子的一级结构信息,提取序列长度、氨基酸残基多尺度组分、成对残基k-space特征与基于残基物理化学性质的地统计学关联总共9357维特征.经改进的二元矩阵重排过滤器和多轮末尾淘汰非线性筛选,获得23个物理化学意义明确的保留特征,建立的非线性支持向量回归模型jackknife交叉验证的相关系数r=0.95,优于文献报道及其他参比特征选择方法.支持向量回归解释体系表明折叠速率与保留描述符的非线性回归极显著,分析了各保留描述符对折叠速率的影响,结果表明蛋白质折叠速率与序列长度、中短程关联特征、三联体残基组份特征等密切相关.
|