Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII) in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus?? -haemolysin. 1. Introduction Many bacterial strains of the B. cereus group are pathogenic to different eukaryotic organisms, including animals, insects, and nematodes [1–6]. The caused illnesses are mainly attributed to the synthesis of toxins and protective cellular structures, usually encoded by plasmids or, in the cases of diarrheic food intoxications, in the chromosome. In addition to the importance of plasmids, carrying the toxins, it was also suggested that the temperate phages can be involved in the adaptation of these bacteria to animal hosts [1, 7]. It is indicative in this respect that several sequenced genomes of these bacteria possess large extrachromosomal elements encoding plasmid-related and phage-related functions [1, 5, 8–12]. The pathogen evolution can thus be regarded as a constant dynamic exchange of genes between plasmids and temperate phages integrated or not into the bacterial chromosome. A notable illustration of such prophage-plasmid coevolution is the similarity between the genome of a large phage 0305f8-36, isolated from B. thuringiensis and a contig of genome of the strain B. weihenstephanensis KBAB4 [13, 14]. In fact, this contig corresponds to the 417?kb extrachromosomal element pBWB401 and could therefore be regarded as either a plasmid or a nonintegrated prophage. Still no evidence exists for the association between phages and toxicity genes in the B. cereus group, although the presence in
References
[1]
A. Lapidus, E. Goltsman, S. Auger et al., “Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity,” Chemico-Biological Interactions, vol. 171, no. 2, pp. 236–249, 2008.
[2]
M. Ehling-Schulz, M. Fricker, and S. Scherer, “Bacillus cereus, the causative agent of an emetic type of food-borne illness,” Molecular Nutrition and Food Research, vol. 48, no. 7, pp. 479–487, 2004.
[3]
A. Kotiranta, K. Lounatmaa, and M. Haapasalo, “Epidemiology and pathogenesis of Bacillus cereus infections,” Microbes and Infection, vol. 2, no. 2, pp. 189–198, 2000.
[4]
M. Mock and A. Fouet, “Anthrax,” Annual Review of Microbiology, vol. 55, pp. 647–671, 2001.
[5]
D. A. Rasko, M. R. Altherr, C. S. Han, and J. Ravel, “Genomics of the Bacillus cereus group of organisms,” FEMS Microbiology Reviews, vol. 29, no. 2, pp. 303–329, 2005.
[6]
E. Schnepf, N. Crickmore, J. van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998.
[7]
R. Schuch and V. A. Fischetti, “The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations,” PLoS ONE, vol. 4, no. 8, Article ID e6532, 2009.
[8]
C. S. Han, G. Xie, J. F. Challacombe et al., “Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis,” Journal of Bacteriology, vol. 188, no. 9, pp. 3382–3390, 2006.
[9]
D. A. Rasko, J. Ravel, O. A. ?kstad et al., “The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1,” Nucleic Acids Research, vol. 32, no. 3, pp. 977–988, 2004.
[10]
N. J. Tourasse, E. Helgason, O. A. ?kstad, I. K. Hegna, and A. B. Kolst?, “The Bacillus cereus group: novel aspects of population structure and genome dynamics,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 579–593, 2006.
[11]
A. R. Hoffmaster, J. Ravel, D. A. Rasko et al., “Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8449–8454, 2004.
[12]
J. F. Challacombe, M. R. Altherr, G. Xie et al., “The complete genome sequence of Bacillus thuringiensis Al Hakam,” Journal of Bacteriology, vol. 189, no. 9, pp. 3680–3681, 2007.
[13]
J. A. Thomas, S. C. Hardies, M. Rolando et al., “Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305Φ8-36,” Virology, vol. 368, no. 2, pp. 405–421, 2007.
[14]
S. C. Hardies, J. A. Thomas, and P. Serwer, “Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage,” Virology Journal, vol. 4, p. 97, 2007.
[15]
T. D. Read, S. N. Peterson, N. Tourasse et al., “The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria,” Nature, vol. 423, no. 6935, pp. 81–86, 2003.
[16]
I. Anderson, A. Sorokin, V. Kapatral et al., “Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis,” FEMS Microbiology Letters, vol. 250, no. 2, pp. 175–184, 2005.
[17]
N. Ivanova, A. Sorokin, I. Anderson et al., “Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis,” Nature, vol. 423, no. 6935, pp. 87–91, 2003.
[18]
Z. I. Andreeva, V. F. Nesterenko, I. S. Yurkov, Z. I. Budarina, E. V. Sineva, and A. S. Solonin, “Purification and cytotoxic properties of Bacillus cereus hemolysin II,” Protein Expression and Purification, vol. 47, no. 1, pp. 186–193, 2006.
[19]
G. Baida, Z. I. Budarina, N. P. Kuzmin, and A. S. Solonin, “Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus,” FEMS Microbiology Letters, vol. 180, no. 1, pp. 7–14, 1999.
[20]
Z. I. Budarina, D. V. Nikitin, N. Zenkin et al., “A new Bacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression of B. cereus haemolysin II,” Microbiology, vol. 150, part 11, pp. 3691–3701, 2004.
[21]
A. M. Shadrin, E. V. Shapyrina, A. V. Siunov, K. V. Severinov, and A. S. Solonin, “Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: polymorphism and distribution of genes among representatives of the cereus group,” Mikrobiologiia, vol. 76, no. 4, pp. 462–470, 2007.
[22]
T. Lund, M. L. de Buyser, and P. E. Granum, “A new cytotoxin from Bacillus cereus that may cause necrotic enteritis,” Molecular Microbiology, vol. 38, no. 2, pp. 254–261, 2000.
[23]
A. Fagerlund, J. Brillard, R. Fürst, M. H. Guinebretière, and P. E. Granum, “Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group,” BMC Microbiology, vol. 7, p. 43, 2007.
[24]
A. Fagerlund, O. Ween, T. Lund, S. P. Hardy, and P. E. Granum, “Genetic and functional analysis of the cytK family of genes in Bacillus cereus,” Microbiology, vol. 150, part 8, pp. 2689–2697, 2004.
[25]
P. Stragier, B. Kunkel, L. Kroos, and R. Losick, “Chromosomal rearrangement generating a composite gene for a developmental transcriptional factor,” Science, vol. 243, no. 4890, pp. 507–512, 1989.
[26]
L. Kroos, B. Kunkel, and R. Losick, “Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor,” Science, vol. 243, no. 4890, pp. 526–529, 1989.
[27]
B. Kunkel, L. Kroos, H. Poth, P. Youngman, and R. Losick, “Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis,” Genes & Development, vol. 3, no. 11, pp. 1735–1744, 1989.
[28]
B. Kunkel, R. Losick, and P. Stragier, “The Bacillus subtilis gene for the developmental transcription factor σ(K) is generated by excision of a dispensable DNA element containing a sporulation recombinase gene,” Genes & Development, vol. 4, no. 4, pp. 525–535, 1990.
[29]
J. D. Haraldsen and A. L. Sonenshein, “Efficient sporulation in Clostridium difficile requires disruption of the gene,” Molecular Microbiology, vol. 48, no. 3, pp. 811–821, 2003.
[30]
T. Baba, T. Bae, O. Schneewind, F. Takeuchi, and K. Hiramatsu, “Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands,” Journal of Bacteriology, vol. 190, no. 1, pp. 300–310, 2008.
[31]
T. Bae, T. Baba, K. Hiramatsu, and O. Schneewind, “Prophages of Staphylococcus aureus Newman and their contribution to virulence,” Molecular Microbiology, vol. 62, no. 4, pp. 1035–1047, 2006.
[32]
C. Goerke, C. Wirtz, U. Flückiger, and C. Wolz, “Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection,” Molecular Microbiology, vol. 61, no. 6, pp. 1673–1685, 2006.
[33]
S. Sozhamannan, M. D. Chute, F. D. McAfee et al., “The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages,” BMC Microbiology, vol. 6, p. 34, 2006.
[34]
D. E. Fouts, D. A. Rasko, R. Z. Cer et al., “Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry,” Journal of Bacteriology, vol. 188, no. 9, pp. 3402–3408, 2006.
[35]
S. Auger, N. Galleron, E. Bidnenko, S. D. Ehrlich, A. Lapidus, and A. Sorokin, “The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains,” Applied and Environmental Microbiology, vol. 74, no. 4, pp. 1276–1280, 2008.
[36]
C. Canchaya, C. Proux, G. Fournous, A. Bruttin, and H. Brüssow, “Prophage genomics,” Microbiology and Molecular Biology Reviews, vol. 67, no. 2, pp. 238–276, 2003, table of contents.
[37]
L. Minakhin, E. Semenova, J. Liu et al., “Genome sequence and gene expression of Bacillus anthracis bacteriophage Fah,” Journal of Molecular Biology, vol. 354, no. 1, pp. 1–15, 2005.
[38]
S. R. Casjens, E. B. Gilcrease, D. A. Winn-Stapley et al., “The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy,” Journal of Bacteriology, vol. 187, no. 3, pp. 1091–1104, 2005.
[39]
R. Schuch and V. A. Fischetti, “Detailed genomic analysis of the Wβ and γ phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance,” Journal of Bacteriology, vol. 188, no. 8, pp. 3037–3051, 2006.
[40]
S. Davison, E. Couture-Tosi, T. Candela, M. Mock, and A. Fouet, “Identification of the Bacillus anthracis γ phage receptor,” Journal of Bacteriology, vol. 187, no. 19, pp. 6742–6749, 2005.
[41]
R. Schuch, D. Nelson, and V. A. Fischetti, “A bacteriolytic agent that detects and kills Bacillus anthracis,” Nature, vol. 418, no. 6900, pp. 884–889, 2002.
[42]
V. A. Fischetti, D. Nelson, and R. Schuch, “Reinventing phage therapy: are the parts greater than the sum?” Nature Biotechnology, vol. 24, no. 12, pp. 1508–1511, 2006.
[43]
A. Sorokin, B. Candelon, K. Guilloux et al., “Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains,” Applied and Environmental Microbiology, vol. 72, no. 2, pp. 1569–1578, 2006.
[44]
C. M. Fraser, J. A. Eisen, K. E. Nelson, I. T. Paulsen, and S. L. Salzberg, “The value of complete microbial genome sequencing (you get what you pay for),” Journal of Bacteriology, vol. 184, no. 23, pp. 6403–6405, 2002.
[45]
E. Branscomb and P. Predki, “On the high value of low standards,” Journal of Bacteriology, vol. 184, no. 23, pp. 6406–6409, 2002.
[46]
S. N. Gardner, M. W. Lam, J. R. Smith, C. L. Torres, and T. R. Slezak, “Draft versus finished sequence data for DNA and protein diagnostic signature development,” Nucleic Acids Research, vol. 33, no. 18, pp. 5838–5850, 2005.
[47]
E. Selkov, R. Overbeek, Y. Kogan et al., “Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3509–3514, 2000.
[48]
K. Takemaru, M. Mizuno, T. Sato, M. Takeuchi, and Y. Kobayashi, “Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis,” Microbiology, vol. 141, part 2, pp. 323–327, 1995.
[49]
L. F. Adams, K. L. Brown, and H. R. Whiteley, “Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter,” Journal of Bacteriology, vol. 173, no. 12, pp. 3846–3854, 1991.
[50]
H. Takami, K. Nakasone, Y. Takaki et al., “Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis,” Nucleic Acids Research, vol. 28, no. 21, pp. 4317–4331, 2000.
[51]
C. Goerke, J. Koller, and C. Wolz, “Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 1, pp. 171–177, 2006.
[52]
J. Brillard and D. Lereclus, “Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain,” Microbiology, vol. 150, part 8, pp. 2699–2705, 2004.
[53]
E. V. Sineva, Z. I. Andreeva-Kovalevskaya, A. M. Shadrin et al., “Expression of Bacillus cereus hemolysin II in Bacillus subtilis renders the bacteria pathogenic for the crustacean daphnia magna,” FEMS Microbiology Letters, vol. 299, no. 1, pp. 110–119, 2009.
[54]
S. L. Tran, E. Guillemet, M. Ngo-Camus et al., “Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages,” Cellular Microbiology, vol. 13, no. 1, pp. 92–108, 2011.
[55]
B. Candelon, K. Guilloux, S. D. Ehrlich, and A. Sorokin, “Two distinct types of rRNA operons in the Bacillus cereus group,” Microbiology, vol. 150, part 3, pp. 601–611, 2004.
[56]
S. Dear and R. Staden, “A sequence assembly and editing program for efficient management of large projects,” Nucleic Acids Research, vol. 19, no. 14, pp. 3907–3911, 1991.
[57]
J. K. Bonfield, K. F. Smith, and R. Staden, “A new DNA sequence assembly program,” Nucleic Acids Research, vol. 23, no. 24, pp. 4992–4999, 1995.
[58]
A. V. Lukashin and M. Borodovsky, “GeneMark.hmm: new solutions for gene finding,” Nucleic Acids Research, vol. 26, no. 4, pp. 1107–1115, 1998.
[59]
A. Dereeper, V. Guignon, G. Blanc et al., “Phylogeny.fr: robust phylogenetic analysis for the non-specialist,” Nucleic Acids Research, vol. 36, pp. W465–469, 2008.
[60]
R. Leplae, G. Lima-Mendez, and A. Toussaint, “ACLAME: a CLAssification of mobile genetic elements, update 2010,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp938, pp. D57–D61, 2009.
[61]
T. M. Lowe and S. R. Eddy, “tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997.