全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mealybug Chromosome Cycle as a Paradigm of Epigenetics

DOI: 10.1155/2012/867390

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, epigenetics has had an ever-growing impact on research not only for its intrinsic interest but also because it has been implied in biological phenomena, such as tumor emergence and progression. The first epigenetic phenomenon to be described in the early 1960s was chromosome imprinting in some insect species (sciaridae and coccoideae). Here, we discuss recent experimental results to dissect the phenomenon of imprinted facultative heterochromatinization in Lecanoid coccids (mealybugs). In these insect species, the entire paternally derived haploid chromosome set becomes heterochromatic during embryogenesis in males. We describe the role of known epigenetic marks, such as DNA methylation and histone modifications, in this phenomenon. We then discuss the models proposed to explain the noncanonical chromosome cycle of these species. 1. Epigenetics The first appearance of the term epigenetics can be ascribed to Conrad Waddington, who stated in 1942 that “epigenetics is the branch of biology which studies the causal interactions between genes and their products, which bring the phenotype into being” [1]. In the modern view, epigenetics encompasses all those hereditary (genetic) phenomena not depending on the DNA sequence itself but on some functionally relevant molecular signatures which are imposed over the sequence (“epi” in Greek means “over”). All the systems involved in gene expression regulation are based on interactions between proteins and DNA. Some mechanisms inhibit or activate the expression of a single gene, acting on the promoter region, and thus reflect the structural organization of the gene itself (gene regulation). However, the epi-genetic systems can regulate phenotypic expression regardless of the gene sequence and are transmitted from one cell generation to the next one or from the parents to their progeny. These systems modulate the functional behavior of chromosomal regions, entire chromosomes, or even whole sets of chromosomes [2]. According to Denise Barlow “epigenetics has always been all the weird and wonderful things that cannot be explained by genetics.” Epigenetic phenomena occur in all the kingdoms from yeast to metazoans and plants. Some are limited to just one or few species. For example, RIP (rearrangement induced premeiotically) [3] and MIP (methylation induced premeiotically) [4] were reported in fungi, where they seem to protect the genome from transposable elements. The term paramutation, on the other hand, was coined to describe a heritable change in gene expression of an allele imposed by the presence of

References

[1]  C. H. Waddington, “Canalization of development and the inheritance of acquired characters,” Nature, vol. 150, no. 3811, pp. 563–565, 1942.
[2]  E. Ballestar, “An introduction to epigenetics,” Advances in Experimental Medicine and Biology, vol. 711, pp. 1–11, 2011.
[3]  E. U. Selker, E. B. Cambareri, B. C. Jensen, and K. R. Haack, “Rearrangement of duplicated DNA in specialized cells of Neurospora,” Cell, vol. 51, no. 5, pp. 741–752, 1987.
[4]  C. Goyon and G. Faugeron, “Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences,” Molecular and Cellular Biology, vol. 9, no. 7, pp. 2818–2827, 1989.
[5]  R. A. Brink, “Paramutation,” Annual Review of Genetics, vol. 7, pp. 129–152, 1973.
[6]  J. B. Hollick, J. E. Dorweiler, and V. L. Chandler, “Paramutation and related allelic interactions,” Trends in Genetics, vol. 13, no. 8, pp. 302–308, 1997.
[7]  E. Lewis, “The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster,” The American Naturalist, vol. 88, pp. 225–239, 1954.
[8]  U. Nur, “Heterochromatization and euchromatization of whole genome in scale insects (Coccoidea:Homoptera),” Development, supplement, pp. 29–34, 1990.
[9]  D. P. Barlow, “Imprinting: a gamete's point of view,” Trends in Genetics, vol. 10, no. 6, pp. 194–199, 1994.
[10]  S. Bongiorni and G. Prantera, “Imprinted facultative heterochromatization in mealybugs,” Genetica, vol. 117, no. 2-3, pp. 271–279, 2003.
[11]  C. W. Metz, “Chromosome behaviour, inheritance and sex determination in Sciara,” The American Naturalist, vol. 72, pp. 485–520, 1938.
[12]  H. V. Crouse, “The controlling element in sex chromosome behavior in Sciara,” Genetics, vol. 45, pp. 1429–1443, 1960.
[13]  F. Schrader and S. Hughes-Schrader, “Haploidy in metazoan,” The Quarterly Review of Biology, vol. 6, pp. 411–438, 1931.
[14]  S. W. Brown and H. S. Chandra, “Chromosome imprinting and the differential regulation of homologous chromosomes,” in Cell Biology: A Comprehensive Treatise, L. Goldstein and D. M. Prescott, Eds., vol. 1, pp. 109–189, Academic Press, New York, NY, USA, 1977.
[15]  S. W. Brown, “Heterochromatin,” Science, vol. 151, no. 3709, pp. 417–425, 1966.
[16]  J. F. Crow, “Two centuries of genetics: a view from halftime,” Annual Review of Genomics and Human Genetics, vol. 1, pp. 21–40, 2000.
[17]  J. McGrath and D. Solter, “Completion of mouse embryogenesis requires both the maternal and paternal genomes,” Cell, vol. 37, no. 1, pp. 179–183, 1984.
[18]  M. A. H. Surani, S. C. Barton, and M. L. Norris, “Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis,” Nature, vol. 308, no. 5959, pp. 548–550, 1984.
[19]  W. Reik, “Genomic imprinting and genetic disorders in man,” Trends in Genetics, vol. 5, no. 10, pp. 331–336, 1989.
[20]  A. M. Mabb, M. C. Judson, M. J. Zylka, and B. D. Philpot, “Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes,” Trends in Neurosciences, vol. 34, no. 6, pp. 293–303, 2011.
[21]  L. D. Hurst and G. T. McVean, “Growth effects of uniparental disomies and the conflict theory of genomic imprinting,” Trends in Genetics, vol. 13, no. 11, pp. 436–443, 1997.
[22]  W. Reik and J. Walter, “Imprinting mechanisms in mammals,” Current Opinion in Genetics and Development, vol. 8, no. 2, pp. 154–164, 1998.
[23]  Y. Li and H. Sasaki, “Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming,” Cell Research, vol. 21, no. 3, pp. 466–473, 2011.
[24]  M. J. Bauer and R. L. Fischer, “Genome demethylation and imprinting in the endosperm,” Current Opinion in Plant Biology, vol. 14, no. 2, pp. 162–167, 2011.
[25]  S. Feng, S. E. Jacobsen, and W. Reik, “Epigenetic reprogramming in plant and animal development,” Science, vol. 330, no. 6004, pp. 622–627, 2010.
[26]  A. Balachowsky, “Essay sur la classification does cochenilles (Homoptera-Coccoidea),” Annales l'Ecole nationale d'agriculture Grignon Serie 3, vol. 3, pp. 34–48, 1948.
[27]  E. Tremblay, “La cariologia nella sistematica delle cocciniglie (Homoptera:Coccoidea),” in Proceedings 9th Italian National Entomology Conference, 1972.
[28]  S. Bongiorni, M. Mazzuoli, S. Masci, and G. Prantera, “Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein,” Development, vol. 128, no. 19, pp. 3809–3817, 2001.
[29]  A. Razin and H. Cedar, “DNA methylation and genomic imprinting,” Cell, vol. 77, no. 4, pp. 473–476, 1994.
[30]  S. Hughes-Schrader, “Cytology of coccids (Cocco?dea-Homoptera),” Advances in Genetics, vol. 2, pp. 127–203, 1948.
[31]  U. Nur, “Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug,” Genetics, vol. 56, no. 3, pp. 375–389, 1967.
[32]  S. W. Brown and W. A. Nelson-Rees, “Radiation analysis of a Lecanoid genetic system,” Genetics, vol. 46, pp. 983–1007, 1961.
[33]  W.A. Nelson-Rees, “The effect of radiation damaged heterochromatic chromosomes on male fertility in the mealy bug Planococcus citri (Risso),” Genetics, vol. 47, pp. 661–683, 1962.
[34]  U. Nur and H. S. Chandra, “Interspecific hybridization and gynogenesis in mealy bugs,” The American Naturalist, vol. 97, pp. 197–202, 1963.
[35]  S. Bongiorni, Cytogenetic and molecular characterization of epigenetic phenomena that control heterochromatin formation, Ph.D. thesis, University of Tuscia, Viterbo, Italy, 2003.
[36]  S. W. Brown and U. Nur, “Heterochromatic chromosomes in the coccids,” Science, vol. 145, no. 3628, pp. 130–136, 1964.
[37]  S. Bongiorni, P. Fiorenzo, D. Pippoletti, and G. Prantera, “Inverted meiosis and meiotic drive in mealybugs,” Chromosoma, vol. 112, no. 7, pp. 331–341, 2004.
[38]  I. G. Cowell, R. Aucott, S. K. Mahadevaiah et al., “Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals,” Chromosoma, vol. 111, no. 1, pp. 22–36, 2002.
[39]  N. Kourmouli, P. Jeppesen, S. Mahadevhaiah et al., “Heterochromatin and tri-methylated lysine 20 of histone H4 in animals,” Journal of Cell Science, vol. 117, no. 12, pp. 2491–2501, 2004.
[40]  S. Bongiorni, B. Pasqualini, M. Taranta, P. B. Singh, and G. Prantera, “Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway,” Journal of Cell Science, vol. 120, no. 6, pp. 1072–1080, 2007.
[41]  S. Volpi, S. Bongiorni, and G. Prantera, “HP2-like protein: a new piece of the facultative heterochromatin puzzle,” Chromosoma, vol. 116, no. 3, pp. 249–258, 2007.
[42]  S. Bongiorni, M. Pugnali, S. Volpi, D. Bizzaro, P. B. Singh, and G. Prantera, “Epigenetic marks for chromosome imprinting during spermatogenesis in coccids,” Chromosoma, vol. 118, no. 4, pp. 501–512, 2009.
[43]  J. T. Bell and T. D. Spector, “A twin approach to unraveling epigenetics,” Trends in Genetics, vol. 27, no. 3, pp. 116–125, 2011.
[44]  T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007.
[45]  B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000.
[46]  T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001.
[47]  T. C. James and S. C. Elgin, “Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene,” Molecular and Cellular Biology, vol. 6, no. 11, pp. 3862–3872, 1986.
[48]  A. J. Bannister, P. Zegerman, J. F. Partridge et al., “Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain,” Nature, vol. 410, no. 6824, pp. 120–124, 2001.
[49]  M. Lachner, D. O'Carroll, S. Rea, K. Mechtler, and T. Jenuwein, “Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins,” Nature, vol. 410, no. 6824, pp. 116–120, 2001.
[50]  J. Nakayama, J. C. Rice, B. D. Strahl, C. D. Allis, and S. I. S. Grewal, “Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly,” Science, vol. 292, no. 5514, pp. 110–113, 2001.
[51]  K. Ekwall, E. R. Nimmo, J. P. Javerzat et al., “Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function,” Journal of Cell Science, vol. 109, no. 11, pp. 2637–2648, 1996.
[52]  L. Aagaard, G. Laible, P. Selenko et al., “Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31,” EMBO Journal, vol. 18, no. 7, pp. 1923–1938, 1999.
[53]  A. H. F. M. Peters, J. E. Mermoud, D. O'Carroll et al., “Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin,” Nature Genetics, vol. 30, no. 1, pp. 77–80, 2002.
[54]  G. Schotta, A. Ebert, V. Krauss et al., “Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing,” EMBO Journal, vol. 21, no. 5, pp. 1121–1131, 2002.
[55]  H. Epstein, T. C. James, and P. B. Singh, “Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri,” Journal of Cell Science, vol. 101, no. 2, pp. 463–474, 1992.
[56]  B. P. Chadwick and H. F. Willard, “Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17450–17455, 2004.
[57]  M. Ferraro, G. L. Buglia, and F. Romano, “Involvement of histone H4 acetylation in the epigenetic inheritance of different activity states of maternally and paternally derived genomes in the mealybug Planococcus citri,” Chromosoma, vol. 110, no. 2, pp. 93–101, 2001.
[58]  P. Jeppesen and B. M. Turner, “The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression,” Cell, vol. 74, no. 2, pp. 281–289, 1993.
[59]  W. Reik and J. Walter, “Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote,” Nature Genetics, vol. 27, no. 3, pp. 255–256, 2001.
[60]  S. Choufani, J. S. Shapiro, M. Susiarjo et al., “A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes,” Genome Research, vol. 21, no. 3, pp. 465–476, 2011.
[61]  T. Watanabe, S. I. Tomizawa, K. Mitsuya et al., “Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus,” Science, vol. 332, no. 6031, pp. 848–852, 2011.
[62]  K. Scarbrough, S. Hattman, and U. Nur, “Relationship of DNA methylation level to the presence of heterochromatin in mealybugs,” Molecular and Cellular Biology, vol. 4, no. 4, pp. 599–603, 1984.
[63]  S. Bongiorni, O. Cintio, and G. Prantera, “The relationship between DNA methylation and chromosome imprinting in the Coccid Planococcus citri,” Genetics, vol. 151, no. 4, pp. 1471–1478, 1999.
[64]  L. M. Field, F. Lyko, M. Mandrioli, and G. Prantera, “DNA methylation in insects,” Insect Molecular Biology, vol. 13, no. 2, pp. 109–115, 2004.
[65]  S. Khosla, G. Mendiratta, and V. Brahmachari, “Genomic imprinting in the mealybugs,” Cytogenetic and Genome Research, vol. 113, no. 1–4, pp. 41–52, 2006.
[66]  V. Mathur, G. Mendiratta, M. Ganapathi et al., “An analysis of histone modifications in relation to sex-specific chromatin organization in the mealybug maconellicoccus hirsutus,” Cytogenetic and Genome Research, vol. 129, no. 4, pp. 323–331, 2010.
[67]  S. Khosla, P. Kantheti, V. Brahmachari, and H. S. Chandra, “A male-specific nuclease-resistant chromatin fraction in the mealybug Planococcus lilacinus,” Chromosoma, vol. 104, no. 5, pp. 386–392, 1996.
[68]  S. Khosla, M. Augustus, and V. Brahmachari, “Sex-specific organisation of middle repetitive DNA sequences in the mealybug Planococcus lilacinus,” Nucleic Acids Research, vol. 27, no. 18, pp. 3745–3751, 1999.
[69]  G. L. Buglia and M. Ferraro, “Germline cyst development and imprinting in male mealybug Planococcus citri,” Chromosoma, vol. 113, no. 6, pp. 284–294, 2004.
[70]  W. A. Nelson-Rees, “A study of sex predetermination in the mealy bug Planococcus citri (Risso),” The Journal of Experimental Zoology, vol. 144, pp. 111–137, 1960.
[71]  A. Cockburn, S. Legge, and M. C. Double, “Sex ration in birds and mammals: can the hypotheses be disentangled?” in Sex Ratios: Concepts and Research Methods, I. C. W. Hardy, Ed., Cambridge University Press, Cambridge, UK, 2002.
[72]  M. W. Sabelis, , C. J. Nagelkerke and , and J. A. J. Breeuwer, “Sex ratio control in arrhenotokous and pseudo-arrhenotokous mites,” in Sex Ratios: Concepts and Research Methods, I. C. W. Hardy, Ed., Cambridge University Press, Cambridge, UK, 2002.
[73]  S. A. West and B. C. Sheldon, “Constraints in the evolution of sex ratio adjustment,” Science, vol. 295, no. 5560, pp. 1685–1688, 2002.
[74]  B. C. Sheldon and S. A. West, “Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals,” American Naturalist, vol. 163, no. 1, pp. 40–54, 2004.
[75]  S. A. West, Sex Allocation, Monographs in Population Biology Series, Princeton University Press, Princeton, NJ, USA, 2009.
[76]  R. L. Trivers and D. E. Willard, “Natural selection of parental ability to vary the sex ratio of offspring,” Science, vol. 179, no. 4068, pp. 90–92, 1973.
[77]  N. P. Varndell and H. C. J. Godfray, “Facultative adjustment of the sex ratio in an insect (Planococcus citri, pseudococcidae) with paternal genome loss,” Evolution, vol. 50, no. 5, pp. 2100–2105, 1996.
[78]  L. Ross, M. B. W. Langenhof, I. Pen, L. W. Beukeboom, S. A. West, and D. M. Shuker, “Sex allocation in a species with paternal genome elimination: the roles of crowding and female age in the mealybug Planococcus citri,” Evolutionary Ecology Research, vol. 12, no. 1, pp. 89–104, 2010.
[79]  H. C. James, “Sex ratios and the status of the male in Pseudococcinae (Hem. Coccidae),” Bulletin of Entomological Research, vol. 28, pp. 429–461, 1937.
[80]  H. C. James, “The effect of the humidity of the environment on sex ratios from over-aged ova of Pseudococcus citri (Risso) (Hemipt. Coccidae),” Proceedings of the Royal Entomological Society of London, vol. 13, pp. 73–79, 1938.
[81]  L. Ross, E. J. Dealey, L. W. Beukeboom, and D. M. Shuker, “Temperature, age of mating and starvation determine the role of maternal effects on sex allocation in the mealybug Planococcus citri,” Behavioral Ecology and Sociobiology, vol. 65, no. 5, pp. 909–919, 2011.
[82]  L. Ross, I. Pen, and D. M. Shuker, “Genomic conflict in scale insects: the causes and consequences of Bizarre genetic systems,” Biological Reviews, vol. 85, no. 4, pp. 807–828, 2010.
[83]  G. L. Buglia, D. Dionisi, and M. Ferraro, “The amount of heterochromatic proteins in the egg is correlated with sex determination in Planococcus citri (Homoptera, Coccoidea),” Chromosoma, vol. 118, no. 6, pp. 737–746, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133