OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
焦炭与co2和水蒸气气化后孔隙结构和高温抗压强度研究
, PP. 654-662
Keywords: 焦炭,溶损率,孔隙结构,高温,抗压强度
Abstract:
?通过焦炭气化反应装置和高温抗压强度测定装置,研究了焦炭与co2和水蒸气气化后孔隙结构变化规律及溶损率、温度和孔隙结构对焦炭高温抗压强度的影响。结果表明,与co2气化相比,水蒸气气化后焦炭平均孔径较小,比表面积和100μm以下气孔数量增加,且整体高温抗压强度更高。焦炭气化后高温抗压强度随溶损率增加而降低,随温度升高而降低。温度为1200℃时,随溶损率增加压缩过程焦炭承受压缩功(wocu)逐渐降低,水蒸气气化后的wocu高于co2条件,随溶损率增加焦炭压缩过程形变量呈降低趋势。在相同溶损率下,水蒸气气化后焦炭的孔隙结构对焦炭强度损害相对较小,抗变形能力更强。
References
[1] | shenfl,guptas,liuy.effectofreactionconditionsoncoketumblingstrengthcarbonstructureandmineralogy[j].fuel,2013,111(92):223-228.
|
[2] | heribertb.coalandcokeforblastfurnaces[j].isijint,1999,39(7):617-624.
|
[3] | ariyamat,satom.optimizationofironmakingprocessforreducingco2emissionsintheintegratedsteelworks[j].isijint,2006,46(12):1736-1444.
|
[4] | kundratdm,miwat,rista.injectionsintheironblastfurnaceagraphicsstudybymeansoftheristoperatingdiagram[j].metallmatertransb,1991,22(3):363-383.
|
[5] | danloyg,berthelemota,grantm.ulcos-pilottestingofthelow-co2blastfurnaceprocessattheexperimentalbfinlulea[j].revmétall,2009,(1):1-8.
|
[6] | 李家新,汪涧江,王平,卢开成.h2o-co2混合气体对焦炭劣化反应的影响[j].安徽工业大学学报,2008,25(3):233-236.(lijia-xin,wangjian-ping,wangping,lukai-cheng.influenceofh2o-co2gasmixtureoncokedegradation[j].janhuiunivtechnol,2008,25(3):233-236.)
|
[7] | 李绍锋,吴诗勇.高温下煤焦的碳微晶及孔结构的演变行为[j].燃料化学学报,2010,38(5):513-517.(lishao-feng,wushi-yong.evolvementbehaviorofcarbonminicrystalandporestructureofcoalcharsathightemperatures[j].jfuelchemtechnol,2010,38(5):513-517.)
|
[8] | 张林仙,黄戒介,房倚天,王洋.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[j].燃料化学学报,2006,34(3):265-269.(zhanglin-xian,huangjie-jie,fangyi-tian,wangyan.studyonreactivityofchineseanthracitecharsgasification-comparisonofreactivitybetweensteamandco2gasificaiton[j].jfuelchemtechnol,2006,34(3):265-269.)
|
[9] | sakaim,nishimurar,nishimuram.failurestrengthofmetallurgicalcoke-anapproachfrommaterialsmechanics[j].tetsutohagane,2006,92(3):164-170.
|
[10] | yamazakiy,hayashizakih,ueokak.theeffectofvariationofthecokemicrostructurewithadditionofironoreonthetensilestrengthofferrouscoke[j].tetsutohagane,2010,96(9):536-544.
|
[11] | yamamotot,hanaokak,sakamotos.effectofcokeporestructureoncoketensilestrengthbefore/afterco2reactionandsurface-breakagestrength[j].tetsutohagane,2006,92(3):206-212.
|
[12] | guptas,dubikovam,frenchd.effectofco2gasificationonthetransformationsofcokemineralsathightemperatures[j].energyfuels,2007,21(2):1052-1061.
|
[13] | ujisaway,nakanok,matsukuray,sunaharak.subjectsforachievementofblastfurnaceoperationwithlowreducingagentrate[j].tetsutohagane,2006,92(12):1015-1021.
|
[14] | kashiwayay,ishiik.thekindsofreactionsincokegasificationbyh2o[j].tetsutohagane,1993,79(12):1305-1310.
|
[15] | takatanik,iwanagay.rateanalysisofgasificationofmetallurgicalcokewithco2andh2o[j].tetsutohagane,1989,75(4):594-601.
|
[16] | norioh,mototsugus,seijin.failurestrengthofcokesreactedwithco2[j].tetsutohagane,2010,96(5):305-312.
|
[17] | 方觉,王兴艳,郭丽,邵剑华.焦炭高温抗压强度研究[j].钢铁,2006,41(5):20-23.(fangjue,wangxing-yan,guoli,shaojian-hua.researchonhightemperaturecompressionstrengthofcoke[j].ironandsteel,2006,41(5):20-23.)
|
[18] | 付志新,郭占成.焦化过程半焦孔隙结构时空变化规律的实验研究-孔隙率,比表面积,孔径分布的变化[j].燃料化学学报,2007,35(7):273-279.(fuzhi-xin,guozhan-cheng.variationofporestructureofsemi-cokewithtemperatureandspatiallocationduringpyrolysis-porosity,specificsurfaceareaandporesizedistribution[j].jfuelchemtechnol,2007,35(7):273-279.)
|
[19] | barrancor,patrickj,snapec,thompsona.impactoflow-costfillermaterialoncokequality[j].fuel,2007,86(14):2179-2185.
|
[20] | finkf.suspensionsmeltingreduction:aewmethodofhotironproduction[j].steeltimes,1996,224(11):398-399.
|
[21] | qinms,gaozk,wanggl.blastfurnaceoperationwithfulloxygenblast[j].ironsteel,1988,15(6):287-292.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|