|
强激光与粒子束 2014
改进加权支持向量机回归方法器件易损性评估Keywords: 特征空间,欧基里德距离,加权支持向量机,回归,高功率微波,电子器件,易损性 Abstract: ?加权支持向量机回归算法,几乎都是以样本输入空间中的一个重要特征量的函数来确定权值,造成了在高维特征空间中作回归可能存在较大误差。针对这一问题,提出利用高维特征空间中的欧基里德距离来确定权值的方法,构造了一种改进的加权支持向量机回归算法,并将其应用到电子器件高功率微波易损性评估中。仿真结果表明:该方法具有比模糊神经网络法、标准支持向量机回归算法和一般的加权支持向量机回归算法更高的预测精度。由于增加了权值的计算过程,相对于标准支持向量机回归和模糊神经网络方法,该方法的效率较低,但与一般的加权支持向量机回归算法相当。
|