全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Power Harvesting Capabilities of SHM Ultrasonic Sensors

DOI: 10.1155/2012/387638

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work is to show that classical Structural Health Monitoring ultrasonic sensors may provide some power harvesting capabilities from a wide variety of vibration sources. In other words, the authors developed an integrated piezoelectric energy harvesting sensor capable of operating a dual mode, that is, carrying out vibration power harvesting and Structural Health Monitoring. First, vibrations signals of an A380 aircraft recorded during different phases of flight are presented to show the need of a wideband piezoelectric energy harvester. Then, the voltage response of a piezoelectric power harvester bonded onto an aluminium cantilever plate and excited by an electromechanical shaker is measured. A finite element model of the energy harvester system is also presented. This model provides the voltage response of the harvester due to a mechanical excitation of the host structure and allows a better understanding of the energy harvesting process. In many cases, a good agreement with the experimental results is obtained. A power measurement also showed the ability of piezoelectric SHM sensors to harvest power over an extended frequency range present in spectra collected in aircrafts. This result could lead to numerous applications even though this kind of power harvester sensor has been initially designed to operate onboard aircrafts. 1. Introduction Energy harvesting, or scavenging as it is frequently called, provides new opportunities for sensor manufacturers in applications that would otherwise have difficulty obtaining a reliable power source. Adding a power source implies the need for replacements as well as maintenance procedures involving costs increase. Various techniques exist in order to carry out energy harvesting. They are based on light or temperature difference [1], radio frequency [2], inductive coupling, wind energy [3], and mechanical vibration conversion [4–8]. For these purposes, several pieces of equipments are used, such as MicroPelletier, wind turbine, RF energy converter, solar panel, and piezoelectric sensors. In this paper, the authors study the feasibility of developing a Structural Health Monitoring (SHM) system having a double functionality, that is, carrying out SHM tasks but also energy harvesting in order to be fully autonomous. This SHM system has been initially built to perform damage assessment of aeronautic structures using well-known techniques like the Selective Lamb Mode Technique [9], Acoustic Emission Monitoring [10, 11], and Lamb waves interaction [12, 13]. Consequently, the energy harvesting technology

References

[1]  D. Samson, M. Kluge, T. Becker, and U. Schmid, “Energy harvesting for autonomous wireless sensor nodes in aircraft,” Procedia Engineering, vol. 5, pp. 1160–1163, 2010.
[2]  M. Al Ahmad and H. N. Alshareef, “Energy harvesting from radio frequency propagation using piezoelectric cantilevers,” Solid-State Electronics, vol. 68, pp. 13–17, 2012.
[3]  L. Chen, F. L. Ponta, and L. I. Lago, “Perspectives on innovative concepts in wind-power generation,” Energy for Sustainable Development, vol. 15, no. 4, pp. 398–410, 2011.
[4]  H. Sodano, E. A. Magliula, G. Park, and D. J. Inman, “Electric power generation using piezoelectric devices,” in Proceedings of the 13th International Conference on Adaptive Structures and Technologies, Potsdam, Germany, 2002.
[5]  M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, “Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems,” Sensors and Actuators A, vol. 142, no. 1, pp. 329–335, 2008.
[6]  Y. Hu, T. Hu, and Q. Jiang, “Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester,” Acta Mechanica Solida Sinica, vol. 20, no. 4, pp. 296–308, 2007.
[7]  M. Zhu and S. Edkins, “Analytical modelling results of piezoelectric energy harvesting devices for self-power sensors/sensor networks in structural health monitoring,” Procedia Engineering, vol. 25, pp. 195–198, 2011.
[8]  E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, “A comparison between several vibration-powered piezoelectric generators for standalone systems,” Sensors and Actuators A, vol. 126, no. 2, pp. 405–416, 2006.
[9]  S. Grondel, C. Paget, C. Delebarre, J. Assaad, and K. Levin, “Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers,” Journal of the Acoustical Society of America, vol. 112, no. 1, pp. 84–90, 2002.
[10]  C. A. Paget, K. Atherton, and E. W. O'Brien, “Triangulation algorithm for damage location in aeronautical composite structures,” in Proceedings of the 8th International Workshop on Structural Health Monitoring, pp. 363–370, Stanford, Calif, USA, 2003.
[11]  C. A. Paget, K. Tiplady, M. Kluge, T. Becker, and J. Schalk, “Feasibility study on wireless impact damage assessment system for thick aeronautical composites,” in Proceedings of the 5th European Workshop on Structural Health Monitoring, pp. 125–130, Sorrento, Italy, 2010.
[12]  F. Benmeddour, S. Grondel, J. Assaad, and E. Moulin, “Study of the fundamental Lamb modes interaction with asymmetrical discontinuities,” NDT and E International, vol. 41, no. 5, pp. 330–340, 2008.
[13]  F. Benmeddour, S. Grondel, J. Assaad, and E. Moulin, “Experimental study of the A0 and S0 Lamb waves interaction with symmetrical notches,” Ultrasonics, vol. 49, no. 2, pp. 202–205, 2009.
[14]  F. L. Di Scalea, H. Matt, and I. Bartoli, “The response of rectangular piezoelectric sensors to Rayleigh and Lamb ultrasonic waves,” Journal of the Acoustical Society of America, vol. 121, no. 1, pp. 175–187, 2007.
[15]  B. Chapuis, Contr?le Santé Intégré par méthode ultrasonore des réparations composites collées sur des structures métalliques, Ph.D. thesis, Université Denis Diderot, Paris, France, 2010.
[16]  T. Sainthuile, C. Delebarre, S. Grondel, and C. Paget, “Bond Graph model of a SHM piezoelectric energy harvester,” in Proceedings of the 8th International Workshop on Structural Health Monitoring, pp. 618–625, Stanford, Calif, USA, 2011.
[17]  Linear Technology. LTC 3588 datasheet.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133