The goal of this study was to analyze a long-run technological progress in the Canadian sawmilling industry. Technological progress was considered as any kind of shift in the production technology estimated by total factor productivity growth (TFPG) and other parameters that complemented it. Out of six econometric models that were tested for efficacy in describing the technology, an unrestricted translog functional-form of a long-run total cost function described the technology sufficiently. The industry’s TFPG averaged 2.3% per year over the study period. Factor substitution elasticities implied that it was easy for the industry to substitute labor for capital and energy. The industry recorded increasing returns to scale and economies of scale; and technological progress was biased toward capital-using, energy-saving, and Hicks-neutral for labor and material. The multiple benefits that society derives from TFPG include: being one of the engines of economic growth, mitigation of natural capital depletion, minimization of wasteful-use of factors of production, mitigation of the adverse effects of inflation, boosting economic savings, freeing input factors to be reallocated to production of other goods and services, improvements in industrial competitiveness in the marketplace, and revealing possibilities to raise wage rates. Implications of the findings for industrial policymaking are discussed.
References
[1]
Canadian Forest Service (2014) The State of Canada’s Forests. Annual Report 2014, Cat. No. Fo1-6/2014E, Natural Resources Canada, Ottawa. http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/35713.pdf
[2]
Ghebremichael, A. (2015) Exploring Causal Linkages between Sustainable Forest Ecosystem Management and Technological Progress in Canadian Logging Industries. Canadian Journal of Forest Research, 45, 1419-1426.
http://dx.doi.org/10.1139/cjfr-2015-0093
[3]
Solow, R.M. (1956) A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70, 65-94. http://dx.doi.org/10.2307/1884513
[4]
Solow, R.M. (1957) Technical Change and the Aggregate Production Function. The Review of Economics and Statistics, 39, 312-320. http://dx.doi.org/10.2307/1926047
[5]
Romer, P.M. (1990) Endogenous Technical Change. The Journal of Political Economy, 98, S71-S102.
http://dx.doi.org/10.1086/261725
[6]
Aghion, P. and Howitt, P. (2009) The Economics of Growth. The MIT Press, Cambridge, MA.
[7]
Christensen, L.R., Jorgenson, D.W. and Lau, L.J. (1973) Transcendental Logarithmic Production Frontiers. The Review of Economics and Statistics, 55, 28-45. http://dx.doi.org/10.2307/1927992
[8]
Allen, R.G.D. (1938) Mathematical Analysis for Economists. Macmillan, London.
[9]
Kant, S. and Nautiyal, J.C. (1997) Production Structure, Factor Substitution, Technological Change, and Total Input Productivity in the Canadian Logging Industry. Canadian Journal of Forest Research, 27, 701-710.
http://dx.doi.org/10.1139/x96-190
[10]
Berndt, E.R. and Watkins, G.C. (1981) Energy Prices and Productivity Trends in the Canadian Manufacturing Sector, 1957-76: Some Exploratory Results. Cat. No. EC-22, Canadian Government Publishing Centre, Supply and Services Canada, Ottawa.
[11]
Denny, M., Fuss, M. and Waverman, L. (1981) The Measurement and Interpretation of Total Factor Productivity in Regulated Industries with Application to Canadian Telecommunications. In: Cowing, T.G. and Stevenson, R.E., Eds., Productivity Measurement in Regulated Industries, Academic Press, New York, 179-218.
[12]
Berndt, E.R. (1991) The Practice of Econometrics, Classic and Contemporary. Addison-Wesley Publishing Company, Reading.
[13]
Bhattacharyya, A. and Mitra, K. (1997) Decomposition of Technological Progress and Factor Bias in Indian Power Sector: An Unbalanced Panel Data Approach. Journal of Productivity Analysis, 8, 35-52.
http://dx.doi.org/10.1023/A:1007720330754
[14]
Christensen, L.R. and Greene, W.H. (1976) Economies of Scale in US Electric Power Generation. Journal of Political Economy, 84, 655-675. http://dx.doi.org/10.1086/260470
[15]
Binswanger, H.P. (1974) A Cost Function Approach to the Measurement of Elasticities of Factor Demand and Elasticities of Substitution. American Journal of Agricultural Economics, 56, 377-386. http://dx.doi.org/10.2307/1238771
[16]
Zellner, A. (1962) An Efficient Method of Estimating Seemingly Unrelated Regression and Tests for Aggregation Bias. Journal of American Statistics Association, 57, 348-368. http://dx.doi.org/10.1080/01621459.1962.10480664
[17]
Pindyck, R.S. and Rubinfeld, D.L. (1998) Econometric Models and Economic Forecasts. 4th Edition, Irwin-McGraw- Hill, Boston.
[18]
Wooldridge, J.M. (2006) Introductory Econometrics: A Modern Approach. 3rd Edition, Thomson/South-Western, Mason.
[19]
Christensen, L.R. and Jorgenson, D.W. (1969) The Measurement of US Real Capital Input, 1929-1967. Review of Income Wealth, 15, 293-320. http://dx.doi.org/10.1111/j.1475-4991.1969.tb00814.x
[20]
Caves, D., Christensen, L.R. and Diewert, D.E. (1982) Multilateral Comparisons of Output, Inputs, and Productivity Using Superlative Index Numbers. Economic Journal, 92, 73-86. http://dx.doi.org/10.2307/2232257
[21]
Caves, D., Christensen, L.R. and Diewert, W.E. (1982) Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica, 50, 1393-1413.
[22]
Nautiyal, J.C. and Singh, B.K. (1985) Production Structure and Derived Demand for Factor Inputs in the Canadian Sawmilling Industry. Forest Science, 31, 871-881.
[23]
Hulten, C.R. (2001) Total Factor Productivity: A Short Biography. In: Hulten, C.R., Dean, E.R. and Harper, M.J., Eds., New Developments in Productivity Analysis, Studies in Income and Wealth, Volume 63, University of Chicago, Chicago, 1-52. http://dx.doi.org/10.7208/chicago/9780226360645.003.0001