全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2016 

Morphological Characterization of Graphene Flake Networks Using Minkowski Functionals

DOI: 10.4236/graphene.2016.51003, PP. 25-34

Keywords: Graphene Flakes, Minkowski Functionals, Euler-Poincaré Characteristic, Connectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two Minkowski functionals were tested in the capacity of morphological descriptors to quantitatively compare the arrays of vertically-aligned graphene flakes grown on smooth and nanoporous alumina and silica surfaces. Specifically, the Euler-Poincaré characteristic and fractal dimension graphs were used to characterize the degree of connectivity and order in the systems, i.e. in the graphene flake patterns of petal-like and tree-like morphologies on solid substrates, and meshlike patterns (networks) grown on nanoporous alumina treated in low-temperature inductivelycoupled plasma. It was found that the Minkowski functionals return higher connectivity and fractal dimension numbers for the graphene flakepatterns with more complex morphologies, and indeed can be used as morphological descriptors to differentiate among various configurations of vertically-aligned graphene flakes grown on surfaces.

References

[1]  Takeuchi, W., Ura, M., Hiramatsu, M., Tokuda, Y., Kano, H. and Hori, M. (2008) Electrical Conduction Control of Carbon Nanowalls. Applied Physics Letters, 92, Article ID: 213103.
http://dx.doi.org/10.1063/1.2936850
[2]  Song, W.L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J. and Sun, Y.P. (2012) Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angewandte Chemie International Edition, 51, 6498-6501. http://dx.doi.org/10.1002/anie.201201689
[3]  Faiella, G., Piscitelli, F., Lavorgna, M., Antonucci, V. and Giordano, M. (2009) Tuning the Insulator to Conductor Transition in a Multiwalled Carbon Nanotubes/Epoxy Composite at Substatistical Percolation Threshold. Applied Physics Letters, 95, Article ID: 153106. http://dx.doi.org/10.1063/1.3242017
[4]  Blackman, B.R.K., Kinloch, A.J., Sohn Lee, J., Taylor, A.C., Agarwal, R., Schueneman, G. and Sprenger, S. (2007) The Fracture and Fatigue Behavior of Nano-Modified Epoxy Polymers. Journal of Materials Science, 42, 7049-7051. http://dx.doi.org/10.1007/s10853-007-1768-6
[5]  Beecroft, L.L. and Ober, C.K. (1997) Nanocomposite Materials for Optical Applications. Chemistry of Materials, 9, 1302-1317. http://dx.doi.org/10.1021/cm960441a
[6]  Kelly, K., Coronado, E., Zhao, L. and Schatz, G.C. (2003) The Optical Properties of Metal Nanoparticles. The Influence of Size, Shape and Dielectric Environment. Journal of Physical Chemistry B, 107, 668-677. http://dx.doi.org/10.1021/jp026731y
[7]  Williams, M.D. and Hess, D.W. (2013) Effect of Growth Morphology on the Electronic Structure of Epitaxial Graphene on SiC. Graphene, 2, 55-59. http://dx.doi.org/10.4236/graphene.2013.21008
[8]  Li, S., Lin, M.M., Toprak, M.S., Kim, D.K. and Muhammed, M. (2010) Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Reviews, 1, Article ID: 5214.
http://dx.doi.org/10.3402/nano.v1i0.5214
[9]  Gass, J., Poddar, P., Almand, J., Srinath, S. and Srikanth, H. (2006) Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions. Advanced Functional Materials, 16, 71-75. http://dx.doi.org/10.1002/adfm.200500335
[10]  Levchenko, I., Keidar, M., Xu, S., Kersten, H. and Ostrikov, K. (2013) Low-Temperature Plasmas in Carbon Nanostructure Synthesis. Journal of Vacuum Science & Technology B, 31, Article ID: 050801. http://dx.doi.org/10.1116/1.4821635
[11]  Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E. and Yan, C. (2012) Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 1, 30-49.
http://dx.doi.org/10.4236/graphene.2012.12005
[12]  Soin, N., Roy, S.S., Lim, T.H. and McLaughlin, J.A.D. (2011) Microstructural and Electrochemical Properties of Vertically Aligned Few Layered Graphene (FLG) Nanoflakes and Their Application in Methanol Oxidation. Materials Chemistry and Physics, 129, 1051-1057.
http://dx.doi.org/10.1016/j.matchemphys.2011.05.063
[13]  Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M.P., Volodin, A. and van Haesendonck, C. (2008) Field Emission from Vertically Aligned Few-Layer Graphene. Journal of Applied Physics, 104, Article ID: 084301. http://dx.doi.org/10.1063/1.2999636
[14]  Li, J., Cheng, X., Shashurin, A. and Keidar, M. (2012) Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene, 1, 1-13. http://dx.doi.org/10.4236/graphene.2012.11001
[15]  Hiramatsu, M., Shiji, K., Amano, H. and Hori, M. (2004) Fabrication of Vertically Aligned Carbon Nanowalls Using Capacitively Coupled Plasma-Enhanced Chemical Vapor Deposition Assisted by Hydrogen Radical Injection. Applied Physics Letters, 84, 4708-4710.
http://dx.doi.org/10.1063/1.1762702
[16]  Bo, Z., Yu, K., Lu, G., Cui, S., Mao, S. and Chen, J. (2011) Vertically Oriented Graphene Sheets Grown on Metallic Wires for Greener Corona Discharges: Lower Power Consumption and Minimized Ozone Emission. Energy & Environmental Science, 4, 2525-2528. http://dx.doi.org/10.1039/C1EE01140E
[17]  Liang, Q., Yao, X., Wang, W., Liu, Y. and Wong, C.P. (2011) A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials. ACS Nano, 5, 2392-2401. http://dx.doi.org/10.1021/nn200181e
[18]  Guo, F., Mukhopadhyay, A., Sheldon, B.W. and Hurt, R.H. (2011) Vertically Aligned Graphene Layer Arrays from Chromonic Liquid Crystal Precursors. Advanced Materials, 23, 508-513.
http://dx.doi.org/10.1002/adma.201003158
[19]  Xu, S., Huang, S.Y., Levchenko, I., Zhou, H.P., Wei, D.Y., Xiao, S.Q., et al. (2011) Highly Efficient Silicon Nanoarray Solar Cells by a Single-Step Plasma-Based Process. Advanced Energy Materials, 1, 373-376. http://dx.doi.org/10.1002/aenm.201100085
[20]  Fang, J., Levchenko, I., Kumar, S., Seo, D. and Ostrikov, K. (2015) Vertically-Aligned Graphene Flakes on Nanoporous Templates: Morphology, Thickness, and Defect Level Control by Pre-Treatment. Science and Technology of Advanced Materials, 15, Article ID: 055009. http://dx.doi.org/10.1088/1468-6996/15/5/055009
[21]  Fang, X., Donahue, J., Shashurin, A. and Keidar, M. (2015) Plasma-Based Graphene Functionalization in Glow Discharge. Graphene, 4, 1-6. http://dx.doi.org/10.4236/graphene.2015.41001
[22]  Volotskova, O., Levchenko, I., Shashurin, A., Raitses, Y., Ostrikov, K. and Keidar, M. (2010) Single-Step Synthesis and Magnetic Separation of Graphene and Carbon Nanotubes in Arc Discharge Plasmas. Nanoscale, 2, 2281-2285. http://dx.doi.org/10.1039/c0nr00416b
[23]  Levchenko, I., Romanov, M. and Keidar, M. (2003) Investigation of a Steady-State Cylindrical Magnetron Discharge for Plasma Immersion Treatment. Journal of Applied Physics, 94, 1408-1413.
http://dx.doi.org/10.1063/1.1590054
[24]  Yin, P.T., Shah, S., Chhowalla, M. and Lee, K.-B. (2015) Design, Synthesis, and Characterization of Graphene-Nanoparticle Hybrid Materials for Bioapplications. Chemical Reviews, 115, 2483-2531.
http://dx.doi.org/10.1021/cr500537
[25]  Lehmann, P., Berchtold, M., Ahrenholz, B., Toelke, J., Kaestner, A., Krafczyk, M., et al. (2008) Impact of Geometrical Properties on Permeability and Fluid Phase Distribution in Porous Media. Advances in Water Resources, 31, 1188-1204. http://dx.doi.org/10.1016/j.advwatres.2008.01.019
[26]  Rodríguez-Valverde, M.A., Ramón-Torregrosa, P.J. and Cabrerizo-Vílchez, M.A. (2010) Estimation of Percolation Threshold of Acid-Etched Titanium Surfaces Using Minkowski Functionals. In: Méndez-Vilas, A. and Díaz, J., Eds., Microscopy: Science, Technology, Applications and Education, Volume 3, Formatex, Banajoz, 1978-1983.
[27]  Arns, C.H., Knackstedt, M.A. and Mecke, K. (2003) Reconstructing Complex Materials via Effective Grain Shapes. Physical Review Letters, 91, Article ID: 215506.
http://dx.doi.org/10.1103/PhysRevLett.91.215506
[28]  Mecke, K. and Arns, C.H. (2005) Fluids in Porous Media: A Morphometric Approach. Journal of Physics: Condensed Matter, 17, S503-S534. http://iopscience.iop.org/article/10.1088/0953-8984/17/9/014/pdf
[29]  Rajaram, H., Ferrand, L.A. and Celia, M.A. (1997) Prediction of Relative Permeabilities for Unconsolidated Soils Using Pore-Scale Network Models. Water Resources Research, 33, 43-52.
http://dx.doi.org/10.1029/96WR02841
[30]  Monetti, R.A., Bauer, J., Sidorenko, I., Mueller, D., Rummeny, E.J. and Matsuura, M. (2009) Assessment of the Human Trabecular Bone Structure Using Minkowski Functionals. Proceedings of SPIE, 7262, Article ID: 2620N. http://iopscience.iop.org/article/10.1117/12.811322
[31]  Cvelbar, U. (2011) Towards Large-Scale Plasma-Assisted Synthesis of Nanowires. Journal of Physics D: Applied Physics, 44, 4980-4986. http://dx.doi.org/10.1088/0022-3727/44/17/174014
[32]  Cvelbar, U., Chen, Z.Q., Sunkara, M.K. and Mozetic, M. (2008) Spontaneous Growth of Superstructure α-Fe2O3 Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma. Small, 4, 1610-1614.
http://dx.doi.org/10.1002/smll.200800278
[33]  Mariotti, D., Lindström, H., Bose, A.C. and Ostrikov, K.K. (2008) Monoclinic β-MoO3 Nanosheets Produced by Atmospheric Microplasma: Application to Lithium-Ion Batteries. Nanotechnology, 19, Article ID: 495302. http://dx.doi.org/10.1088/0957-4484/19/49/495302
[34]  Azarenkov, N.A. and Ostrikov, K.N. (1999) Surface Magnetoplasma Waves at the Interface between a Plasma-Like Medium and a Metal in the Voigt Geometry. Physics Reports, 308, 333-428.
http://dx.doi.org/10.1016/S0370-1573(98)00032-5
[35]  Fang, J., Levchenko, I., Ostrikov, K. and Prawer, S. (2013) Sonochemical Nanoplungers: Crystalline Gold Nanowires by Cavitational Extrusion through Nanoporous Alumina. Journal of Materials Chemistry C, 1, 1727-1731. http://dx.doi.org/10.1039/c2tc00560c
[36]  Fang, J., Aharonovich, I., Levchenko, I., Ostrikov, K., Spizzirri, P.G., Rubanov, S., et al. (2012) Plasma-Enabled Growth of Single-Crystalline SiC/AlsiC Core-Shell Nanowires on Porous Alumina Templates. Crystal Growth and Design, 12, 2917-2922. http://dx.doi.org/10.1021/cg300103a
[37]  Yue, Z., Levchenko, I., Kumar, S., Seo, D., Wang, X., Dou, S., et al. (2013) Large Networks of Vertical Multi-Layer Graphenes with Morphology-Tunable Magnetoresistance. Nanoscale, 5, 9283-9288.
http://dx.doi.org/10.1039/c3nr00550j
[38]  Seo, D.H., Kumar, S. and Ostrikov, K. (2011) Control of Morphology and Electrical Properties of Self-Organized Graphenes in a Plasma. Carbon, 49, 4331-4339.
http://dx.doi.org/10.1016/j.carbon.2011.06.004
[39]  Michielsen, K. and Raedt, H. (2001) Integral-Geometry Morphological Image Analysis. Physical Reports, 347, 461-538. http://dx.doi.org/10.1016/S0370-1573(00)00106-X
[40]  Lillehei, P.T., Kim, J.-W., Gibbons, L.J. and Park, C.A. (2009) Quantitative Assessment of Carbon Nanotube Dispersion in Polymer Matrices. Nanotechnology, 20, Article ID: 325708.
http://dx.doi.org/10.1088/0957-4484/20/32/325708
[41]  Levchenko, I., Ostrikov, K., Mariotti, D. and Svrcek, V. (2009) Self-Organized Carbon Connections between Catalyst Particles on a Silicon Surface Exposed to Atmospheric-Pressure Ar + CH4 Microplasmas. Carbon, 47, 2379-2390. http://dx.doi.org/10.1016/j.carbon.2009.04.031
[42]  Legland, D., Kiêu, K. and Devaux, M.-F. (2007) Computation of Minkowski Measures on 2D and 3D Binary Images. Image Analysis and Stereology, 26, 83-92. http://dx.doi.org/10.5566/ias.v26.p83-92
[43]  Gouyet, J.-F. (1996) Physics and Fractal Structures. Springer-Verlag, Berlin, and Masson.
[44]  Kou, J., Liu, Y., Wu, F., Fan, J., Lu, H. and Xu, Y. (2009) Fractal Analysis of Effective Thermal Conductivity for Three-Phase (Unsaturated) Porous Media. Journal of Applied Physics, 106, Article ID: 054905. http://dx.doi.org/10.1063/1.3204479
[45]  Bacchi, O.O.S., Reichardt, K. and Villa Nova, N.A. (1996) Fractal Scaling of Particle and Pore Size Distributions and Its Relation to Soil Hydraulic Conductivity. Scientia Agricola, 53, 356-356. http://dx.doi.org/10.1590/S0103-90161996000200027
[46]  Ruffett, C., Gueguen, Y. and Darot, M. (1991) Complex Conductivity Measurements and Fractal Nature of Porosity. Geophysics, 56, 758-769. http://dx.doi.org/10.1190/1.1443093
[47]  Levchenko, I., Korobov, M., Romanov, M. and Keidar, M. (2004) Ion Current Distribution on a Substrate during Nanostructure Formation. Journal of Physics D: Applied Physics, 37, 1690-1695.
http://dx.doi.org/10.1088/0022-3727/37/12/014
[48]  Douketis, C., Wang, Z., Haslett, T. and Moskovits, M. (1995) Fractal Character of Cold-Deposited Silver Films Determined by Low-Temperature Scanning Tunneling Microscopy. Physical Review B, 51, Article ID: 11022. http://dx.doi.org/10.1103/PhysRevB.51.11022
[49]  Mecke, K.R. (2000) Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics. Statistical Physics and Spatial Statistics, 554, 111-184. http://dx.doi.org/10.1007/3-540-45043-2_6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133