全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bi-Function Multi-Beam Graphene Lens Antenna for Terahertz Applications

DOI: 10.4236/wet.2016.71004, PP. 36-45

Keywords: Reflectarray, Transmitarray, Graphene, Single/Dual-Beam Antenna, THz Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bi-function Compact graphene lens antenna in terahertz (THz) band has been investigated. The array function is switched between two status, reflectarray and/or transmitarray. The tunability of graphene conductivity introduces the bi-function characteristics of a single array structure in the THz band. The design depends on changing the graphene DC biasing voltage to transform the transmitting antenna to reflecting antenna. The compact structure of the antenna array saves the cost and the allocation area for the terahertz communication applications. A 13 × 13 reflectarray/ transmitarray antenna covering an area of 364 × 364 μm2 is proposed. A dual-beams reflectarray/transmitarray antenna is achieved by rearranging the cell elements of the array successively. Finally, a single structure is used to work as reflectarray and transmitarray antenna at the same time by rearranging the applied voltages between the different pieces of the graphene sheet using chess board arrangement. The phases of the successive unit-cells are kept the same of their locations in the original full array. The radiation characteristics of the array are investigated using the CST Microwave Studio for the bi-function operation.

References

[1]  Choi, W. and Lee, J. (2012) Graphene: Synthesis and Applications. CRC Press, Taylor & Francis Group, Boca Raton.
[2]  Yurduseven, O. (2011) Compact Parabolic Reflector Antenna Design with Cosecant-Squared Radiation Pattern. Microwaves, Radar and Remote Sensing Symposium, 25-27 August 2011, Kiev, 382-385.
[3]  Rebeiz, G.M., Koh, K.J., Tiku, Y., Kang, D., Kim, C.Y., Atesal, Y., Cetinoneri, B., Kim, S.Y. and Shin, D. (2010) Highly Dense Microwave and Millimeter Wave Phased Array T/R Modules and Butler Matrices Using CMOS and SiGe RFICs. IEEE International Symposium on, Phased Array Systems and Technology (ARRAY), Boston, October 2010, 245-249.
[4]  Ruphuy, M., Ren, Z. and Ramahi, O.M. (2014) Flat Far Field Lenses and Reflectors. Progress in Electromagnetics Research M, (PIER M), 34, 163-170.
[5]  Huang, J. and Encinar, J.A. (2008) Reflectarray Antennas. IEEE Press, John Wiley and Sons, Hoboken.
[6]  Al-Nuaimi, M.K. and Hong, W. (2014) Discrete Dielectric Reflectarray and Lens for E-Band with Different Feed. IEEE Antennas and Wireless Propagation Letters, 13, 947-950.
http://dx.doi.org/10.1109/LAWP.2014.2313569
[7]  Zainud-Deen, S.H., Gaber, S.M., Malhat, H.A. and Awadalla, K.H. (2013) Perforated Transmitaray-Enhanced Circularly Polarized Antenna for High-Gain Multi-Beam Radiation. 2013 International Symposium on Antennas and Propagation (ISAP 2013), Nanjing, October 2013, 484-487.
[8]  Zainud-Deen, S.H., El-Shalaby, N., Gaber, S. M., Malhat, H.A. and Awadalla, K.H. (2012) Reflectarrays Mounted on or Embedded in Cylindrical or Spherical Surfaces. 2012 Middle East Conference on Antennas and Propagation (MECAP 2012), Cairo, 29-31 December 2012, 1-6.
[9]  Dussopt, L., Kaouach, H., Lanteri, J. and Sauleau, R. (2011) Circularly-Polarized Discrete Lens Antennas in 60-GHz Band. Radio Engineering, 20, 733-738.
[10]  Gaber, S.M. (2013) Analysis and Design of Reflectarrays/Transmitarrays Antennas. Ph.D Thesis, Faculty of Electronic Engineering, Menoufiya University, Menouf.
[11]  Lau, J.Y. and Hum, S.V. (2012) A Wideband Reconfigurable Transmitarray Element. IEEE Transactions on Antennas and Propagation, 60, 1303-1311.
http://dx.doi.org/10.1109/TAP.2011.2180475
[12]  Lau, J.Y. and Hum, S.V. (2012) Reconfigurable Transmitarray Design Approaches for Beamforming Applications. IEEE Transactions on Antennas and Propagation, 60, 5679-5689.
http://dx.doi.org/10.1109/TAP.2012.2213054
[13]  Eridl, E., Topalli, K., Zorlu, O., Toral, T., Yildirim, E., Kulah, H. and Civi, O.A. (2013) A Reconfigurable Microfluidic Transmitarray Unit Cell. 7th European Conference on Antennas and Propagat (EUCAP), Gothenburg, 8-12 April 2013, 2957-2960.
[14]  Abdelrahman, A.H., Nayeri, P., Elsherbeni, A.Z. and Yang, F. (2014) Analysis and Design of Wideband Transmitarray Antennas with Different Unit-Cell Phase Ranges. IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, 6-11 July 2014, 1266-1267.
http://dx.doi.org/10.1109/aps.2014.6904960
[15]  Zainud-Deen, S.H., Hassen, W.M., Malhat, H.A. and Awadalla, K.H. (2015) Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lens. Advanced Electromagnetics, 4.
[16]  Fujita, S. and Suzuki, A. (2013) Electrical Conduction in Graphene and Nanotubes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
http://dx.doi.org/10.1002/9783527676668
[17]  Zhang, X.-L., Zhao, X., Liu, Z.-B., Liu, Y.-S., Chen, Y.-S. and Tian, J.-G. (2009) Enhanced Nonlinear Optical Properties of Graphene-Oligothiophene Hybrid Material. Optics Express, 17, 23959-23964.
http://dx.doi.org/10.1364/OE.17.023959
[18]  Bao, W. (2012) Electrical and Mechanical Properties of Graphene. PhD Thesis, University of California Riverside, Riverside.
[19]  Grigorenko, A.N., Polini, M. and Novoselov, K.S. (2012) Graphene Plasmonics. Nature Photonics, 6, 749-758.
http://dx.doi.org/10.1038/nphoton.2012.262
[20]  Ren, X., Sha, W.E.I. and Choy, W.C.H. (2013) Tuning Optical Responses of Metallic Dipole Nanoantenna Using Grapheme. Optical Express, 21, 31824-31829.
http://dx.doi.org/10.1364/OE.21.031824
[21]  Lovat, G. (2012) Equivalent Circuit for Electromagnetic Interaction and Transmission through Graphene Sheets. IEEE Transactions on Electromagnetic Compatibility, 54, 101-109.
http://dx.doi.org/10.1109/TEMC.2011.2169072
[22]  Carrasco, E., Tamagnone, M. and Perruisseau-Carrier, J. (2012) Tunable Graphene Reflective Cells for THz Reflectarrays and Generalized Law of Reflection. Applied Physics Letters, 102, Article ID: 104103.
[23]  Malhat, H.A., Zainud-Deen, S.H. and Gaber, S.M. (2014) Graphene Based Transmitarray for Terahertz Applications. Progress in Electromagnetics Research M, 36, 185-191.
http://dx.doi.org/10.2528/PIERM14050705
[24]  Malhat, H.A., Badawy, M.M., Zainud-Deen, S.H. and Awadalla, K.H. (2015) Plasma Reflectarray/Transmitarray Antennas Using a Single Structure. Plasmonics, 10, 1479-1487.
http://dx.doi.org/10.1007/s11468-015-9956-8
[25]  Carrasco, E., Tamagnone, M., Mosig, J.R., Low, T. and Perruisseau-Carrier, J. (2015) Gate-Controlled Mid-Infrared Light Bending with Aperiodic Graphene Nanoribbons Array. Nanotechnology, 26, Article ID: 134002.
http://dx.doi.org/10.1088/0957-4484/26/13/134002
[26]  Kong, X.-T., Khan, A.A., Kidambi, P.R., et al. (2015) Graphene-Based Ultrathin Flat Lenses. ACS Photonics, 2, 200-207.
http://dx.doi.org/10.1021/ph500197j
[27]  User’s Manual of CST Microwave Studio 2012.
[28]  Rouhi, N., Capdevila, S., Jain, D., et al. (2012) Terahertz Graphene Optics. Nano Research, 5, 667-678.
http://dx.doi.org/10.1007/s12274-012-0251-0
[29]  Hanson, G.W. (2008) Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Grapheme. IEEE Transactions on Antennas and Propagation, 56, 747-757.
http://dx.doi.org/10.1109/TAP.2008.917005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133