全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gedanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwarzschild Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity)

DOI: 10.4236/jhepgc.2016.21012, PP. 106-124

Keywords: Massive Gravitons, Heisenberg Uncertainty Principle (HUP), Riemannian-Penrose Inequality

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is with the permission of Stepan Moskaliuk similar to what he will put in the confer-ence proceedings of the summer teaching school and workshop for Ukrainian PhD physics stu-dents as given in Bratislava, as of summer 2015. With his permission, this paper will be in part reproduced here for this journal. First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, \"\" and \"\" are negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time is from the Heisenberg Uncertainty principle (HUP) applied to δgtt in such a way as to give, in the Planckian space-time regime a nonzero minimum non zero lower ground to a massive graviton, mgraviton. The lower bound to the massive graviton is influenced by δgtt and kinetic energy which is in the Planckian emergent duration of time δt as (E-V)?. We find from δgtt version of the Heisenberg Uncertainty Principle (HUP), that the quantum value of the Δt·ΔE Heisenberg Uncertainty Principle (HUP) is likely not recoverable due to δgtt ≠ Ο(1)~gtt ≡ 1.?i.e. δgtt≠ Ο(1) . i.e. is consistent with non-curved space, so Δt · ΔE ≥ \"\"no longer holds. This even if we take the stress energy tensor approximation

References

[1]  Will, C. (2015) Was Einstein Right? A Centenary Assessment. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation: A Centennial Perspective, Cambridge University Press, Cambridge, 49-96. http://dx.doi.org/10.1017/cbo9781139583961.004
[2]  Will, C. (2014) The Confrontation between General Relativity and Experiment. http://relativity.livingreviews.org/Articles/lrr-2014-4/download/lrr-2014-4Color.pdf
[3]  Downes, T.G. and Milburn, G.J. (2012) Optimal Quantum Estimation for Gravitation. http://arxiv.org/abs/1108.5220
[4]  Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130. http://dx.doi.org/10.1139/p86-019
[5]  Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 1453. http://dx.doi.org/10.1139/p86-257
[6]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack. http://dx.doi.org/10.1142/6730
[7]  Kolb, E.W. and Turner, M.S. (1990) The Early Universe. Addison-Wesley Publishing Company, The Advanced Book Program, Redwood City.
[8]  Barbour, J. (2009) The Nature of Time. http://arxiv.org/pdf/0903.3489.pdf
[9]  Barbour, J. (2010) Shape Dynamics: An Introduction. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Birkhauser, Springer-Verlag, London, 257-297.
[10]  Goldhaber, A. and Nieto, M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979. http://arxiv.org/abs/0809.1003 http://dx.doi.org/10.1103/RevModPhys.82.939
[11]  Handley, W.J., Brechet, S.D., Lasenby, A.N. and Hobson, M.P. (2014) Kinetic Initial Conditions for Inflation. http://arxiv.org/pdf/1401.2253v2.pdf
[12]  Walecka, J.D. (2008) Introduction to Modern Physics, Theoretical Foundations. World Press Scientific Co, Pte. Ltd., Singapore.
[13]  Penrose, R. (2010) Cycles of Time: An Extraordinary New View of the Universe. The Bodley Head, London.
[14]  Petrov, A.Z. (1969) Einstein Spaces. Pergamum Press, Oxford and London. http://dx.doi.org/10.1016/b978-0-08-012315-8.50007-0
[15]  Gorbunov, D. and Rubakov, V. (2011) Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory. World Scientific Publishing Pte. Ltd, Singapore.
[16]  Fulling, S.A. (1991) Aspects of Quantum Field Theory in Curved Spacetime (London Mathematical Society Student Texts). Cambridge University Press, Cambridge.
[17]  Gutfreund, H. and Renn, J. (2015) The Road to Relativity, the History and Meaning of Einstein’s “The Foundation of General Relativity”, (Featuring the Original Manuscript of Einstein’s Masterpiece). Princeton University Press, Princeton and Oxford. http://dx.doi.org/10.1515/9781400865765
[18]  Griffiths, J. and Podolsky, J. (2009) Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics, Cambridge. http://dx.doi.org/10.1017/CBO9780511635397
[19]  Wald, R.M. (1994) Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press, Chicago.
[20]  Fredenhagen, K. and Rejzner, K. (2010) Local Covariance and Background Independence. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Birkhauser, Springer-Verlag, London, 15-23.
[21]  Corda, C. (2012) Primordial Gravity’s Breath. Electronic Journal of Theoretical Physics, 9, 1-10. http://arxiv.org/abs/1110.1772
[22]  Gilen, S. and Oriti, D. (2010) Discrete and Continuum Third Quantization of Gravity. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Birkhauser, Springer-Verlag, London, 41-64.
[23]  Birrell, N.D. and Davies, P.C.W. (1982) Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, Cambridge University Press, London. http://dx.doi.org/10.1017/CBO9780511622632
[24]  Jack Ng, Y. and Jack, Y. (2007) Holographic Foam, Dark Energy and Infinite Statistics. Physics Letters B, 657, 10-14. http://dx.doi.org/10.1016/j.physletb.2007.09.052
[25]  Jack Ng, Y. (2008) Space-Time Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. http://dx.doi.org/10.3390/e10040441
[26]  Hambler, H. (2009) Quantum Gravitation, the Feynman Path Integral Approach. Springer-Verlag, Berlin.
[27]  Ciufolini, I. and Wheeler, J. (1995) Gravitation and Inertia. Princeton Series in Physics, Princeton University Press, Princeton.
[28]  Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. http://arxiv.org/abs/hep-th/0212290
[29]  Padmanabhan, T. http://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html.
[30]  Egan, C. and Lineweaver, C.H. (2010) A Larger Estimate of the Entropy of the Universe. The Astrophysical Journal, 710, 1825-1834. http://www.mso.anu.edu.au/~charley/papers/EganLineweaverApJOnline.pdf http://dx.doi.org/10.1088/0004-637X/710/2/1825
[31]  Ali, A.F. and Das, S. (2015) Cosmology from Quantum Potential. Physics Letters B, 741, 276-279. http://dx.doi.org/10.1016/j.physletb.2014.12.057
[32]  Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251. http://www.hindawi.com/journals/isrn/2014/718251/
[33]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack. http://dx.doi.org/10.1142/6730
[34]  Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Non Linear Dynamics. http://arxiv.org/abs/astro-ph/0402311
[35]  Rovelli, C. and Vidotto, F. (2015) Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spin foam Theory. Cambridge University Press, Cambridge.
[36]  Galloway, G., Miao, P. and Schoen, R. (2015) Initial Data and the Einstein Constraints. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation: A Centennial Perspective, Cambridge University Press, Cambridge, 412-448.
[37]  Wen, H., Li, F.Y., Fang, Z.Y. and Beckwith, A. (2014) Impulsive Cylindrical Gravitational Wave: One Possible Radiative Form Emitted from Cosmic Strings and Corresponding Electromagnetic Response. http://arxiv.org/abs/1403.7277
[38]  Bojowald, M. (2012) A Momentous Arrow of Time. In: Mersini, L. and Vaas, R., Eds., The Arrows of Time: A Debate in Cosmology, Springer Verlag, Berlin, 169-189. http://arxiv.org/pdf/0910.3200.pdf
[39]  Padmanabhan, T. (2010) Gravitation, Foundations and Frontiers. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511807787
[40]  Ali, A.F., Khalil, M.M. and Vagenas, E.C. (2015) Minimal Length in Quantum Gravity and Gravitational Measurements. http://arxiv.org/abs/1510.06365
[41]  Crowell, L. (2015) Topology of States on a Black Hole Event Horizon. Electronic Journal of Theoretical Physics, 12, 211-218.
[42]  Beckwith, A. (2016) Gedanken Experiment (Thought Experiment) about Gravo-Electric and Gravo-Magnetic Fields, and the Link to Gravitons and Gravitational Waves in the Early Universe. Recently Accepted Article in JHEPGC.
[43]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502 http://dx.doi.org/10.1142/S0218271809015904
[44]  Corda, C. (2007) A Longitudinal Component in Massive Gravitational Waves Arising from a Bimetric Theory of Gravity. Astroparticle Physics, 28, 247-250. http://arxiv.org/abs/0811.0985 http://dx.doi.org/10.1016/j.astropartphys.2007.05.009
[45]  Cowen, R. (2015) Gravitational Waves Discovery Now Officially Dead; Combined Data from South Pole Experiment BICEP2 and Planck Probe Point to Galactic Dust as Confounding Signal. http://www.nature.com/news/gravitational-waves-discovery-now-officially-dead-1.16830
[46]  Cowen, R. (2014) Full-Galaxy Dust Map Muddles Search for Gravitational Waves. http://www.nature.com/news/full-galaxy-dust-map-muddles-search-for-gravitational-waves-1.15975
[47]  Beckwith, A. (2016) Non Linear Electrodynamics Contributing to a Minimum Vacuum Energy (“Cosmological Constant”) Allowed in Early Universe Cosmology. Journal of High Energy Physics, Gravitation and Cosmology, 2, 25-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133