全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2016 

Experimental Investigation of the Effect of Graphene Nanosheets on the Optical-Electrical Properties of Vanadium Oxide Nanocomposites

DOI: 10.4236/graphene.2016.51002, PP. 14-24

Keywords: Vanadium Oxide, Graphene, Optical Properties, Electrical Conductivity, Nanorods

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, ultraviolet-visible spectra (Uv-Vis) (absorbance/reflectance) and electrical conductivity. Our results are revealing a remarkable effect on the morphology and structure of vanadium oxide nanoparticles. Hence, the graphene layers improved their electrical conductivity and highly influenced their optical properties. Therefore, the obtained results may lead to better performance for a large field of applications.

References

[1]  Kavitha, T., Gopalan, A.I., Lee, K.P. and Park, S.Y. (2012) Glucose Sensing, Photocatalytic and Antibacterial Properties of Graphene-ZnO Nanoparticle Hybrids. Carbon, 50, 2994-3000.
http://dx.doi.org/10.1016/j.carbon.2012.02.082
[2]  Kottegoda, I.R.M., Idris, N.H., Lu, L., Wang, J.Z. and Liu, H.K. (2011) Synthesis and Characterization of Graphene-Nickel Oxide Nanostructures for Fast Charge-Discharge Application. Electrochimica Acta, 56, 5815-5822. http://dx.doi.org/10.1016/j.electacta.2011.03.143
[3]  Liang, M. and Zhi, L. (2009) Graphene-Based Electrode Materials for Rechargeable Lithium Batteries. Journal of Materials Chemistry, 19, 5871-5878. http://dx.doi.org/10.1039/b901551e
[4]  Nethravathi, C., Anumol, E.A., Rajamathi, M. and Ravishankar, N. (2011) Highly Dispersed Ultrafine Pt and PtRu Nanoparticles on Graphene: Formation Mechanism and Electrocatalytic Activity. Nanoscale, 3, 569-571. http://dx.doi.org/10.1039/C0NR00664E
[5]  Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A. and Liu, J. (2009) Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano, 3, 907-914. http://dx.doi.org/10.1021/nn900150y
[6]  Yu, D., Yang, Y., Durstock, M., Baek, J.B. and Dai, L. (2010) Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices. ACS Nano, 4, 5633-5640.
http://dx.doi.org/10.1021/nn101671t
[7]  Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
http://dx.doi.org/10.1038/nmat1849
[8]  Geim, A.K. (2009) Graphene: Status and Prospects. Science, 324, 1530-1534.
http://dx.doi.org/10.1126/science.1158877
[9]  Wang, X. and Li, Y. (2006) Solution-Based Synthetic Strategies for 1-D Nanostructures. Inorganic Chemistry, 45, 7522-7534. http://dx.doi.org/10.1021/ic051885o
[10]  Wu, C., Wei, H., Ning, B. and Xie, Y. (2010) New Vanadium Oxide Nanostructures: Controlled Synthesis and Their smart Electrical Switching Properties. Advanced Materials, 22, 1972-1976.
http://dx.doi.org/10.1002/adma.200903890
[11]  Kim, H., Kim, Y., Kim, T., Jang, A.R., Jeong, H.Y., Han, S.H., Yoon, D.H., Shin, H.S., Bae, D.J., Kim, K.S. and Yang, W.S. (2013) Enhanced Optical Response of Hybridized VO2/Graphene Films. Nanoscale, 5, 2632-2636. http://dx.doi.org/10.1039/c3nr34054f
[12]  An, Q., Lv, F., Liu, Q., Han, C., Zhao, K., Sheng, J., Wei, Q., Yan, M. and Mai, L. (2014) Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode. Nano Letters, 14, 6250-6256. http://dx.doi.org/10.1021/nl5025694
[13]  Qin, J., Lv, W., Li, Z., Li, B., Kang, F. and Yang, Q.H. (2014) An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries. Chemical Communications, 50, 13447-13450. http://dx.doi.org/10.1039/C4CC05065G
[14]  Nethravathi, C., Rajamathi, C.R., Rajamathi, M., Gautam, U.K., Wang, X., Golberg, D. and Bando, Y. (2013) N-Doped Graphene-VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery. ACS AppliedMaterials& Interfaces, 5, 2708-2714. http://dx.doi.org/10.1021/am400202v
[15]  Shi, Y., Chou, S.L., Wang, J.Z., Wexler, D., Li, H.J., Liu, H.K. and Wu, Y. (2012) Graphene Wrapped LiFePO4/C Composites as Cathode Materials for Li-Ion Batteries with Enhanced Rate Capability. Journal of Materials Chemistry, 22, 16465-16470. http://dx.doi.org/10.1039/c2jm32649c
[16]  Zhao, H., Pan, L., Xing, S., Luo, J. and Xu, J. (2013) Vanadium Oxides-Reduced Graphene Oxide Composite for Lithium-Ion Batteries and Supercapacitors with Improved Electrochemical Performance. Journal of Power Sources, 222, 21-31. http://dx.doi.org/10.1016/j.jpowsour.2012.08.036
[17]  Lee, J.W., Lim, S.Y., Jeong, H.M., Hwang, T.H., Kang, J.K. and Choi, J.W. (2012) Extremely Stable Cycling of Ultra-Thin V2O5 Nanowire-Graphene Electrodes for Lithium Rechargeable Battery Cathodes. Energy & Environmental Science, 5, 9889-9894. http://dx.doi.org/10.1039/c2ee22004k
[18]  Khenfouch, M., Buttner, U., Baïtoul, M. and Maaza, M. (2014) Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method. Graphene, 3, 7-13.
http://dx.doi.org/10.4236/graphene.2014.32002
[19]  Khenfouch, M., Baïtoul, M. and Maaza, M. (2014) Raman Study of Graphene/Nanostructured Oxides for Optoelectronic Applications. Optical Materials, 36, 27-30.
http://dx.doi.org/10.1016/j.optmat.2013.07.004
[20]  Hou, C., Zhang, Q., Zhu, M.,Li, Y. and Wang, H. (2011) One-Step Synthesis of Magnetically-Functionalized Reduced Graphite Sheets and Their Use in Hydrogels. Carbon, 49, 47-53.
http://dx.doi.org/10.1016/j.carbon.2010.08.040
[21]  Zhan, Y., Meng, F., Lei, Y., Zhao, R., Zhong, J. and Liu, X. (2011) One-Pot Solvothermal Synthesis of Sandwich-Like Graphene Nanosheets/Fe3O4 Hybrid Material and Its Microwave Electromagnetic Properties. Materials Letters, 65, 1737-1740. http://dx.doi.org/10.1016/j.matlet.2011.03.019
[22]  Sediri, F. and Gharbi, N. (2007) Nanorod B Phase VO2 Obtained by Using Benzylamine as a Reducing Agent. Materials Science and Engineering: B, 139, 114-117.
http://dx.doi.org/10.1016/j.mseb.2006.12.011
[23]  Pavasupree, S., Suzuki, Y., Kitiyanan, A., Pivsa-Art, S. and Yoshikawa, S. (2005) Synthesis and Characterization of Vanadium Oxides Nanorods. Journal of Solid State Chemistry, 178, 2152-2158.
http://dx.doi.org/10.1016/j.jssc.2005.03.034
[24]  Baudrin, E., Sudant, G., Larcher, D., Dunn, B. and Tarascon, J.M. (2006) Preparation of Nanostructured VO2(B) from Vanadium Oxide Aerogels. Chemistry of Materials, 18, 4369-4374.
http://dx.doi.org/10.1021/cm060659p
[25]  Lavayen, V., O’Dwyer, C., Cardenas, G., Gonzàlez, G. and Sotomayor Torres, C.M. (2007) Towards Thiol Functionalization of Vanadium Pentoxide Nanotubes Using Gold Nanoparticles. Materials Research Bulletin, 42, 674-685. http://dx.doi.org/10.1016/j.materresbull.2006.07.022
[26]  Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R.M., Chhowalla, M., Cho, K. and Chabal, Y. (2011) The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. Journal of Physical Chemistry C, 115, 19761-19781. http://dx.doi.org/10.1021/jp2052618
[27]  Ndwandwe, S., Tshibangu, P. and Dikio, E.D. (2011) Synthesis of Carbon Nanospheres from Vanadium β-Diketonate Catalyst. International Journal of Electrochemical Science, 6, 749-760.
[28]  Das, A., Chakraborty, B. and Sood, A.K. (2008) Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects. Bulletin of Materials Science, 31, 579-584.
http://dx.doi.org/10.1007/s12034-008-0090-5
[29]  Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, L.G., Jorio, A. and Saito, R. (2007) Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Physical Chemistry Chemical Physics, 9, 1276-1290. http://dx.doi.org/10.1039/b613962k
[30]  Li, R. and Liu, C.Y. (2010) VO2(B) Nanospheres: Hydrothermal Synthesis and Electrochemical Properties. Materials Research Bulletin, 45, 688-692.
http://dx.doi.org/10.1016/j.materresbull.2010.02.021
[31]  Schilbe, P. (2002) Raman Scattering in VO2. Physica B, 316, 600-602. http://dx.doi.org/10.1016/S0921-4526(02)00584-7
[32]  Petrov, G.I., Yakovlev, V.V. and Squier, J. (2002) Raman Microscopy Analysis of Phase Transformation Mechanisms of Vanadium Dioxide. Applied Physics Letters, 81, 1023-1025.
http://dx.doi.org/10.1063/1.1496506
[33]  Faggio, G., Modafferi, V., Panzera, G., Alfieri, D. and Santangelo, S. (2012) Micro-Raman and Photoluminescence Analysis of Composite Vanadium Oxide/Poly-Vinyl Acetate Fibers Synthesized by Electro-Spinning. Journal of Raman Spectroscopy, 43, 761-768. http://dx.doi.org/10.1002/jrs.3089
[34]  Baddour-Hadjean, R., Marzouk, A. and Pereira-Ramos, J.P. (2012) Structural Modifications of LixV2O5 in a Composite Cathode (0 ≤ x < 2) Investigated by Raman Micro Spectrometry. Journal of Raman Spectroscopy, 43, 153-160. http://dx.doi.org/10.1002/jrs.2984
[35]  Fang, W.C. (2008) Synthesis and Electrochemical Characterization of Vanadium Oxide/Carbon Nanotube Composites for Supercapacitors. Journal of Physical Chemistry C, 112, 11552-11555.
http://dx.doi.org/10.1021/jp8011602
[36]  Murgia, V., Torres, E.M.F., Gottifredi, J.C. and Sham, E.L. (2006) Sol-Gel Synthesis of V2O5-SiO2 Catalyst in the Oxidative Dehydrogenation of n-Butane. Applied Catalysis A: General, 312, 134-143.
http://dx.doi.org/10.1016/j.apcata.2006.06.042
[37]  Liu, J. and Xue, D. (2010) Cation-Induced Coiling of Vanadium Pentoxide Nanobelts. Nanoscale Research Letters, 5, 1619-1626. http://dx.doi.org/10.1007/s11671-010-9685-z
[38]  Yan, C. and Xue, D. (2008) Formation of Nb2O5 Nanotube Arrays through Phase Transformation. Advanced Materials, 20, 1055-1058. http://dx.doi.org/10.1002/adma.200701752
[39]  Chen, X., Zhao, W., Wang, F. and Xu, J. (2012) Preparation and Characterization of Vanadium (IV) Oxide Supported on SBA-15 and Its Catalytic Performance in Benzene Hydroxylation to Phenol Using Molecular Oxygen. Journal of Natural Gas Chemistry, 21, 481-487.
http://dx.doi.org/10.1016/S1003-9953(11)60394-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133