Barlow DP, Bartolomei MS. Genomic imprinting in mammals[M]. Cold Spring Harb Perspect Biol, 2014, 6:a018382.
[2]
Kriaucionis S, Tahiliani M. Expanding the epigenetic landscape:novel modifications of cytosine in genomic DNA[M]. Cold Spring Harb Perspect Biol, 2014, 6:a018630.
[3]
Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals[J]. Proc Natl Acad Sci, 2010, 107:8689-8694.
Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics[J]. Cardiovasc Res, 2011, 90:430-440.
[6]
Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine[J]. Science, 2008, 319:1787-1789.
[7]
Vicent GP, Nacht AS, Zaurin R, et al. Minireview:role of kinases and chromatin remodeling in progesterone signaling to chromatin[J]. Mol Endocrinol, 2010, 24:2088-2098.
[8]
Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling:genetics, genomics and mechanisms[J]. Cell Res, 2011, 21:396-420.
[9]
To TK, Nakaminami K, Kim JM, et al. Arabidopsis HDA6 is required for freezing tolerance[J]. Biochem Biophys Res Commun, 2011, 406:414-419.
[10]
Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp[J]. Physiol Plant, 2004, 121:472-480.
Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states[J]. Proc Natl Acad Sci USA, 2014, 111:8547-8552.
[13]
Busslinger M, Tarakhovsky A. Epigenetic control of immunity[M].
[14]
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145:341-355.
[15]
Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients[J]. DNA Cell Biol, 2008, 27:357-365.
[16]
Jia L, Zhu L, Wang JZ, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronaryartery disease[J]. Atherosclerosis, 2013, 228:346-352.
[17]
Myzak MC, Tong P, Dashwood WM, et al. Sulf oraphanere tards the growth of human PC-3xenografts and inhibits HDAC activity in human subjects[J]. Exp Biol Med(Maywood), 2007, 232:227-234.
[18]
Bai Y, Cui W, Xin Y, et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulaton of Nrf2 expression and transcription activation[J]. J Mol Cell Cardiol, 2013, 57:82-95.
[19]
Coban D, Milenkovic D, Chanet A, et al. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration[J]. Mol Nutr Food Res, 2012, 56, 1270-1281.
[20]
Moon CY, Ku CR, Cho YH, et al. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis[J]. Biochem Biophys Res Commun, 2012, 423:116-121.
[21]
Fu W, Farache J, Clardy SM, et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells[J]. ELife, 2014, 3:e04631.
[22]
Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-kappaB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition[J]. Journal of Biological Chemistry, 2012, 287:28840-28851.
[23]
Zeng L, Zhou MM. Bromodomain:An acetyl-lysine binding domain[J]. FEBS Lett, 2002, 513:124-128.
[24]
Wallace TM, Matthews DR. Coefficient of failure:a methodology for examining longitudinal beta-cell function in type 2 diabetes[J]. Diabet Med, 2002, 19:465-469.
[25]
Coppedè F. Advances in the genetics and epigenetics of neurodegenerative diseases[J]. Epigenetics Neurodegener Dis, 2014, 1:3-31.
[26]
Overk CR, Masliah E. Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease[J]. Biochem Pharmacol, 2014, 88:508-516.
[27]
Coppedè F. Advances in the genetics and epigenetics of neurodegenerative diseases[J]. Epigenetics Neurodegener Dis, 2014, 1:3-31.
[28]
Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated proteintau[J]. J Neurochem, 2008, 106:2119-2130.
[29]
Coppedè F. One-carbon metabolism and Alzheimer’s disease:focuson epigenetics[J]. Curr Genomics, 2010, 11:246-260.
[30]
Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease[J]. Neuropsychopharmacology, 2010, 35:870-880.
[31]
Fischer A, Sananbenesi F, Wang X, et al. Recovery of learning and memory after neuronal loss is associated with chromatin remodeling[J]. Nature, 2007, 447:178-182.
[32]
Govindarajan N, Agis-Balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administer edatan advanced stage of disease progression[J]. J Alzheimers Dis, 2011, 26:187-197.
[33]
Ricobaraza A, Cuadrado-Tejedor M, Marco S, et al. Phenylbutyrat-erescues dendritic spine loss associated with memory deficits in amouse model of Alzheimer disease[J]. Hippocampus, 2010, 22:1040-1050.
[34]
Thomas B, Beal MF. Molecular insights into Parkinson’s disease[J]. F1000 Med Rep, 2011, 3:7.
[35]
Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha synuclein expression and affects the pathogenesis of Parkinson’s disease[J]. PLoS One, 2010, 5:e15522.
[36]
Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus:anovel mechanism for epigenetic alterations in Lewy body diseases[J]. J Biol Chem, 2011, 286:9031-9037.
[37]
Rane P, Shields J, Heffernan M, et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motorstage PD[J]. Neuropharmacology, 2012, 62:2409-2412.
[38]
Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein mediated toxicity in models of Parkinson’s disease[J]. Science, 2007, 317:516-519.
[39]
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase:therapeutic potential in Parkinson’s disease?[J]. Pharmacol Ther, 2013, 140:34-52.
[40]
Pan XF. Mechanism of trinucleotide repeats instabilities:the necessities of repeat non-B secondary structure for-mation and the roles of cellular trans-acting factors[J]. Acta Genet Sin, 2006, 33(1):1-11.
[41]
Pan XF, Ding YF, Shi LF. The roles of SbcCD and RNaseE in the transcription of GAA?TTC repeats in Escherichia coli[J]. DNA Repair(Amst), 2009, 8(11):1321-1327.
[42]
Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease[J]. Pathobiol Aging Age Relat, 2012, 2:1-22.
[43]
Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes[J]. Hum Mol Genet, 1997, 6:1771-1780.
[44]
Sandi C, Sandi M, Anjomani Virmouni S, et al. Epigenetic-based therapies for Friedreich’s ataxia[J]. Frontiers in Genetics, 2014, 5(165):1-12.
[45]
Butler R, Bates GP. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders[J]. Nat Rev Neurosci, 2006, 7:784-796.
[46]
Watts JK, Yu D, Charisse K, et al. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters[J]. Nucleic Acids Res, 2010, 38:5242-5259.
[47]
Loomis EW, Eid JS, Peluso P, et al. Sequencing the unsequence-able:expanded CGG-repeat alleles of the fragile X gene[J]. Genome Res, 2013, 23:121-128.
[48]
Oberle I, Rousseau F, Heitz D, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome[J]. Science, 1991, 252:1097-1102.
[49]
Luo S, Robinson JC, Reiss AL, et al. DNA methylation of the fragile X locus in somatic and germ cells during fetal development:relevance to the fragile X syndrome and X inactivation[J]. Somat Cell Mol Genet, 1993, 19:393-404.
[50]
Hansen RS, Gartler SM, Scott CR, et al. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene[J]. Hum Mol Genet, 1992, 1:571-578.
[51]
Godler DE, Tassone F, Loesch DZ, et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio[J]. Hum Mol Genet, 2010, 19:1618-1632.
[52]
潘学峰. 基因疾病的分子生物学[M]. 北京:化学工业出版社, 2014:1-450.
[53]
Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet, 2007, 39:61-69.
[54]
Mar BG, Bullinger L, Basu E, et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia[J]. Leukemia, 2012, 26:1881-1883.
[55]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136:629-641.
[56]
Melnyk CW, Molnar A, Bassett A, Baulcombe DC. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana[J]. Curr Biol, 2011, 21:1678-1683.
[57]
Brockdorff N, Turner BM. Dosage compensation in mammals[M]. Cold Spring Harb Perspect Biol, 2014:a019406.
[58]
Chioda M, Becker PB. Soft skills turned into hard facts:nucleosome remodelling at developmental switches[J]. Heredity, 2010, 105:71-79.
[59]
Morettini S, Podhraski V, Lusser A. ATP-dependent chromatin remodeling enzymes and their various roles in cell cycle control[J]. Front Biosci, 2008, 13:5522-5532.
[60]
Baulcombe DC, Dean C. Epigenetic regulation in plant responses to the environment[M]. Cold Spring Harb Perspect Biol, 2014, 6:a019471.
[61]
Borsani O, Zhu J, Verslues PE, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123:1279-1291.
[62]
Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress[J]. J Biol Chem, 2002, 277:37741-37746.
[63]
Oh ET, Park MT, Choi BH, et al. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells[J]. Investigational New Drugs, 2010, 30(2):435-442.
[64]
Cold Spring Harb Perspect Biol, 2014, 6:a019307.
[65]
Weber C, Noels H. Atherosclerosis:current pathogenesis and therapeutic options[J]. Nat Med, 2011, 17:1410-1422.
[66]
Castro R, Rivera I, Blom HJ, et al. Homocysteine metabolism, hyperhomocysteine mia and vascular disease:an overview[J]. J Inherit Metab Dis, 2006, 29:3-20.
[67]
Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis:transition from theory to practice[J]. Circ J, 2010, 74:213-220.
[68]
Zaina S, Heyn H, Carmona FJ, et al. A DNA methylation map of human Atherosclerosis[J]. Circ Cardiovasc Genet, 2014, 7(5):692-700.
[69]
Mikaela MB, Ross TM, Anthony WR. Epigenetic modulation in the treatment of atherosclerotic disease[J]. Fronries in Genetics, 2014, 364:1-7.
[70]
Elbarbry F, Elrody N. Potential health benefits of sulforaphane:a review of the experimental, clinical, and epidemiological evidences and underlying mechanisms[J]. J Med Plants Res, 2011, 5:473-484.
[71]
Zhang C, Su ZY, Khor TO, et al. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMPC1 cells through epigenetic regulation[J]. Biochem Pharmacol, 2013, 85:1398-1404.
[72]
Dean L, McEntyre J. The Genetic Landscape of diabetes[M]. Bethesda(MD):National Center for Biotechnology Information 9US0, 2004:1-135.
[73]
Aathira R, Jain V. Advances in management of type 1 diabetes mellitus[J]. World J Diabetes, 2014, 5(5):689-696.
[74]
Singh AK, Sinha B. Advances in basal insulin therapy:lessons from current evidence[J]. J Indian Med Assoc, 2013, 111(11):735-736, 738-742.
[75]
Huang B, Yang XD, Zhou MM, et al. Brd4 coactivates transcriptio-nal activation of NF-kappaB via specific binding to acetylated RelA
[76]
[J]. Molecular and Cellular Biology, 2009, 29:1375-1387.
[77]
Zou Z, Huang B, Wu X, et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA[J]. Oncogene, 2014, 33:2395-2404.
[78]
Brietake SA. Oral antihyperglycemic treatment options for type 2 diabetes mellitus[J]. Med Clin North Am, 2015, 99(1):87-106.
[79]
Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in betacells:type 2 diabetes, good radicals gone bad, and the glutathione connection[J]. Diabetes, 2003, 52:581-587.
[80]
Mirkin SM. Expandable DNA repeats and human disease[J]. Nature, 2007, 447:932-940.
[81]
Kovtun IV, McMurray CT. Features of trinucleotide repeat instability in vivo[J]. Cell Res, 2008, 18:198-213.
[82]
Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in Alzheimer’s disease:decrements in DNA methylation[J]. Neurobiol. Aging, 2010, 31:2025-2037.
[83]
Chouliaras L, Mastroeni D, Delvaux E, et al. Consistent decrease in global DNA methylation and hydroxy methylation in the hippocampus of Alzheimer’s disease patients[J]. Neurobiol Aging, 2013, 34:2091-2099.
[84]
Zhang K, Schrag M, Crofton A, et al. Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease[J]. Proteomics, 2012, 12:1261-1268.
[85]
Gr?ff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain[J]. Nature, 2010, 483:222-226.
[86]
Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease[J]. Pathobiol Aging Age Relat, 2012, 2:1-12.
[87]
Francis YI, Fà M, Ashraf H, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2009, 18:131-139.
[88]
Zhang Z, Schluesener YHJ. Oralad ministration of histone deacetylase inhibitor MS-275 ameliorates neuro inflammation and cerebralamy loidosis and improves behavior in a mouse model[J]. J Neuropathol Exp Neurol, 2013, 72:178-185.
[89]
Sung YM, Lee T, Yoon H, et al. Mercaptoacetamide-based classII HDAC inhibitor owers Aβ levels and improves learning and memory in a mouse model of Alzheimer’s disease[J]. Exp Neurol, 2013, 239:192-201.
[90]
Mak MK, Cole JH. Movement dysfunction in patients with Parkins-on’s disease:a literature review[J]. Aust J Physiother, 1991, 37
[91]
(1):7-17.
[92]
Devos D, Lejeune S, Cormier-Dequaire F, et al. Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in?Parkinson''s?disease[J]. Parkinsonism Relat Disord, 2014, 20(2):170-175.
[93]
Coppedè F. Genetics and epigenetics of Parkinson’s disease[J]. Scientific World Journal, 2012, 2010:1-12.
[94]
Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’brains[J]. J Neurosci, 2010, 30:6355-6359.
[95]
Monti B, Gatta V, Piretti F, et al. Valproic acid is neuroprotective in the rotenonerat model of Parkinson’s disease:involvement of α-synuclein[J]. Neurotox Res, 2010, 17:130-141.
[96]
Zhou W, Bercury K, Cummiskey J, et al. Phenylbutyrateup-regulates the DJ-1protein and protects neurons in cell culture and in animal models of Parkinson’s disease[J]. J Biol Chem, 2011, 286:14941-14951.
[97]
St Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in arotenone-induced Drosophila model of Parkinson’s disease[J]. Neuroscience, 2013, 246:382-390.
[98]
Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity[J]. Hum Mol Genet, 2006, 15:3012-3023.
[99]
Goers J, Manning-Bog AB, McCormack AL, et al. Nuclear localization of alpha-synuclein and its interaction with histones[J]. Biochemistry, 2003, 42:8465-8471.
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase:therapeutic potential in Parkinson’s disease?[J]Pharmacol Ther, 2013, 140:34-52.
[102]
Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia:autosomal recessive disease caused by an intronic GAA triplet repeat expansion[J]. Science, 1996, 271:1423-1427.
[103]
Pandolfo M. Friedreich ataxia[J]. Arch Neurol, 2008, 65:1296-1303.
[104]
Jain N, Rossi A, Garcia-Manero G. Epigenetic therapy of leukemia:an update[J]. Int J Biochem Cell Biol, 2009, 41:72-80.
[105]
Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia[J]. Nat Chem Biol, 2006, 2:551-558.
[106]
Soragni E, Xu C, Plastere HL, et al. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia[J]. J Child Neurol, 2012, 27:1164-1173.
[107]
Gallagher A, Hallahan B. Fragile X-associated disorders:a clinical overview[J]. J Neurol, 2010, 259:401-413.
[108]
Coffee B, Keith K, Albizua I, et al. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA[J]. Am J Hum Genet, 2009, 85:503-514.
[109]
Pieretti M, Zhang FP, Fu YH, et al. Absence of expression of the FMR-1 gene in fragile X syndrome[J]. Cell, 191, 66:817-822.
[110]
Fischer A. Targeting histone-modifications in Alzheimer’s disease. what is the evidence that this is a promising therapeutic avenue?[J]. Neuropharmacology, 2014, 80:95-102.