全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于高通量测序技术的细菌非编码RNA研究方法进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.03.015, PP. 99-104

Keywords: 细菌,非编码RNA,高通量测序,生物信息学

Full-Text   Cite this paper   Add to My Lib

Abstract:

细菌非编码RNA指细菌中不编码蛋白质,而以RNA的分子形式起调控作用的一类核酸分子。高通量测序技术的应用极大地推进了多种细菌中非编码RNA的发现工作,但由于现阶段对细菌非编码RNA特征的认识尚不够深入,该领域测序数据的生物信息学分析还存在许多不足。介绍了应用高通量测序技术研究细菌非编码RNA的两种主要技术——RNA-seq技术和dRNA-seq技术,对现行的筛选非编码RNA的生物信息学分析方法进行综述,并对该领域生物信息学分析策略的改进提出设想。

References

[1]  Michaux C, Verneuil N, Hartke A, et al. Physiological roles of small RNA molecules[J]. Microbiology, 2014, 160(6):1007-1019.
[2]  Sittka A, Lucchini S, Papenfort K, et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq[J]. PLoS Genetics, 2008, 4(8):e1000163.
[3]  Gottesman S, Storz G. RNA reflections:converging on Hfq[J]. RNA, 2015, 21(4):511-512.
[4]  Liu JM, Livny J, Lawrence MS, et al. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing[J]. Nucleic Acids Res, 2009, 37(6):e46.
[5]  Shinhara A, Matsui M, Hiraoka K, et al. Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli[J]. BMC Genomics, 2011, 12(1):428.
[6]  Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli[J]. Genome Research, 2011, 21(9):1487-1497.
[7]  Mycobacterium tuberculosis[J]. PLoS One, 2012, 7(12):e51950.
[8]  Bohn C, Rigoulay C, Chabelskaya S, et al. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism[J]. Nucleic Acids Research, 2010:gkq462.
[9]  Acebo P, Martin-Galiano AJ, Navarro S, et al. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae[J]. RNA, 2012, 18(3):530-546.
[10]  2010, 464(7286):250-255.
[11]  in Bacillus subtilis[J]. Nucleic Acids Res, 2010:gkq454.
[12]  Wurtzel O, Sesto N, Mellin JR, et al. Comparative transcriptomics of pathogenic and non pathogenic Listeria species[J]. Molecular Systems Biology, 2012, 8(1):583.
[13]  Dinan AM, Tong P, Lohan AJ, et al. Relaxed selection drives a noisy noncoding transcriptome in members of the Mycobacterium tuberculosis complex[J]. mBio, 2014, 5(4):e01169-14.
[14]  Vockenhuber MP, Sharma CM, Statt MG, et al. Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor[J]. RNA Biology, 2011, 8(3):468-477.
[15]  Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer[J]. Nat Biotechnol, 2011, 29(1):24-26.
[16]  Solovyev V, Salamov A. Automatic annotation of microbial genomes
[17]  Its Applica-tions in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers Inc, 2011:61-78.
[18]  Will S, Reiche K, Hofacker IL, et al. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering[J]. PLoS Computational Biology, 2007, 3(4):e65.
[19]  Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs[J]. PNAS, 2005, 102(7):2454-2459.
[20]  Meyer F, Goesmann A, McHardy AC, et al. GenDB-an open source genome annotation system for prokaryote genomes[J]. Nucleic Acids Research, 2003, 31(8):2187-2195.
[21]  Delcher AL, Harmon D, Kasif S, et al. Improved microbial gene identification with GLIMMER[J]. Nucleic Acids Research, 1999, 27(23):4636-4641.
[22]  Nielsen JS, Larsen MH, Lilleb?k EMS, et al. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes[J]. PLoS One, 2011, 6(4):e19019.
[23]  (10):e1004765.
[24]  very and characterization of small RNAs in Corynebacteriumgluta-micum ATCC 13032[J]. BMC Genomics, 2013, 14(1):714.
[25]  Kr?ger C, Dillon SC, Cameron ADS, et al. The transcriptional landscape and small RNAs of Salmonella entericaserovar Typhimurium[J]. Proceedings of the National Academy of Sciences, 2012, 109(20):E1277-E1286.
[26]  Nicol JW, Helt GA, Blanchard SG, et al. The Integrated Genome Browser:free software for distribution and exploration of genome-scale datasets[J]. Bioinformatics, 2009, 25(20):2730-2731.
[27]  Toffano-Nioche C, Nguyen AN, Kuchly C, et al. Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus[J]. RNA, 2012, 18(12):2201-2219.
[28]  and metagenomicsequences[M]// Robert W Li Metagenomics and
[29]  Eddy SR. A new generation of homology search tools based on probabilistic inference[C]. Genome Inform, 2009, 23(1):205-211.
[30]  Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computa-tional discovery of Rho-independent transcription terminators illu-minates their relationship to DNA uptake[J]. Genome Biology, 2007, 8(2):R22.
[31]  Perkins TT, Kingsley RA, Fookes MC, et al. A strand-specific RN-Seq analysis of the transcriptome of the typhoid bacillus salmonella typhi[J]. PLoS Genetics, 2009, 5(7):e1000569.
[32]  Rombel IT, Sykes KF, Rayner S, et al. ORF-FINDER:a vector for high-throughput gene identification[J]. Gene, 2002, 282(1):33-41.
[33]  Lukashin AV, Borodovsky M. GeneMark. hmm:new solutions for gene finding[J]. Nucleic Acids Res, 1998, 26(4):1107-1115.
[34]  Tjaden B. TargetRNA:a tool for predicting targets of small RNA action in bacteria[J]. Nucleic Acids Research, 2008, 36(suppl. 2):W109-W113.
[35]  Sievers S, Lilleb?k EMS, Jacobsen K, et al. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB[J]. Nucleic Acids Research, 2014, 42(14):9383-9398.
[36]  Quereda JJ, Ortega áD, Pucciarelli MG, et al. The Listeria small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5''-UTR variant[J]. PLoS Genetics, 2014, 10
[37]  Qi X, Yang X, Chen S, et al. Ochratoxin A induced early hepatotoxicity:new mechanistic insights from microRNA, mRNA and proteomic profiling studies[J]. Scientific Reports, 2014, 4:5163.
[38]  Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens[J]. Cell Host & Microbe, 2010, 8(1):116-127.
[39]  Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria:expanding frontiers[J]. Molecular Cell, 2011, 43(6):880-891.
[40]  Behrens S, Widder S, Mannala GK, et al. Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs[J]. PloS One, 2014, 9(2):e83979.
[41]  Sridhar J, Gunasekaran P. Computational small RNA prediction in bacteria[J]. Bioinformatics and Biology Insights, 2013, 7:83.
[42]  Sorek R, Cossart P. Prokaryotic transcriptomics:a new view on regulation, physiology and pathogenicity[J]. Nature Reviews Genetics, 2010, 11(1):9-16.
[43]  Mraheil MA, Billion A, Mohamed W, et al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages[J]. Nucleic Acids Research, 2011:gkr033.
[44]  Miotto P, Forti F, et al. Genome-wide discovery of small RNAs in
[45]  Howden BP, Beaume M, Harrison PF, et al. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(8):3864-3874.
[46]  Yan Y, Su S, Meng X, et al. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection[J]. PLoS One, 2013, 8(9):e74495.
[47]  Sharma CM, Hoffmann S, Darfeuille F, et al. The primary transcrip-tome of the major human pathogen Helicobacter pylori[J]. Nature,
[48]  Wilms I, Overl?per A, Nowrousian M, et al. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens[J]. RNA Biology, 2012, 9(4):446-457.
[49]  Irnov I, Sharma CM, Vogel J, et al. Identification of regulatory RNAs
[50]  Mentz A, Neshat A, Pfeifer-Sancar K, et al. Comprehensive disco-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133