全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

我国薯类基础研究的动态与展望

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.03.002, PP. 65-71

Keywords: 甘薯,木薯,马铃薯,重要农艺性状,调控机制,育种,动态与展望

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国是世界上薯类生产大国,马铃薯、甘薯和木薯等在农业产业发展中发挥着重要作用。薯类主粮化已成为保障我国粮食安全的新措施,但其基础研究相对于“大作物”如水稻、玉米等还存在较大距离。开展三大薯类(木薯、甘薯和马铃薯)种质创新和新品种培育对推动薯类产业化意义重大,其中分子育种是其遗传改良的生长点和动力。从深化利用种质资源和基于基因组信息的基因挖掘,以及薯类共性和个性生物学问题的联合攻关等重要方面进行综述,阐明了薯类研究现状和趋势,旨为促进薯类分子育种技术的提升提供参考。

References

[1]  Liu Q, Liu J, Zhang P, et al. Root and tuber crops[M]// Van Alfen N, Encyclopedia of Agriculture and Food Systems. San Diego:Elsevier, 2014, 5:46-61.
[2]  Liu J, Zheng Q, Ma Q, et al. Cassava genetic transformation and its application in breeding[J]. Journal of Integrative Plant Biology, 2011, 53(7):552-569.
[3]  杨俊, 张敏, 张鹏. 甘薯遗传转化及其在分子育种中的应用[J]. 植物生理学报, 2011, 47(5):427-436.
[4]  RTB. Expanding collaboration, catalyzing innovation-RTB annual report 2013[R]. Lima(Peru). CGIAR Research Program on Roots, Tubers and Bananas(RTB), 2014. Available online at:www. rtb. cgiar. org
[5]  Zhang N, Liu B, Ma C, et al. Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato[J]. Molecular Biology Reports, 2014, 41(1):505-517.
[6]  Xia J, Zeng C, Chen Z, et al. Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in cassava[J]. BMC Genomics, 2014, 15(1):634.
[7]  Xia Z, Zou M, Zhang S, et al. AFSM sequencing approach:a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping[J]. Sci Rep, 2014, 4:7300.
[8]  An F, Fan J, Li J, et al. Comparison of leaf proteomes of cassava(Manihot esculenta Crantz)cultivar NZ199 diploid and autotetraploid genotypes[J]. PLoS One, 2014, 9(4):e85991.
[9]  Yan L, Gu YH, Tao X, et al. Scanning of transposable elements and analyzing expression of transposase genes of sweet potato(Ipomoea batatas)[J]. PLoS One, 2014, 9(3):e90895.
[10]  Liu D, He S, Zhai H, et al. Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato[J]. Plant Cell, Tissue and Organ Culture, 2014, 117(1):1-16.
[11]  Liu D, Wang L, Zhai H, et al. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato[J]. PLoS One, 2014, 9(12):e115128.
[12]  Fan W, Zhang M, Zhang H, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato(Ipomoea batatas)expressing spinach betaine aldehyde dehydrogenase[J]. PLoS One, 2012, 7(5):e37344.
[13]  Wang H, Fan W, Li H, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J]. PLoS One, 2013, 8(11):e78484.
[14]  Rolland-Sabaté A, Sanchez T, Buléon A, et al. Molecular and supra-molecular structure of waxy starches developed from cassava(Manihot esculenta Crantz)[J]. Carbohydrate Polymers, 2013, 92(2):1451-1462.
[15]  Xu J, Duan X, Yang J, et al. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses[J]. Plant Signaling & Behavior, 2013, 8(6):e24525.
[16]  Liu X, Lin Y, Liu J, et al. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity[J]. Plant Biotechnology Journal, 2013, 11(5):640-647.
[17]  Liu X, Cheng S, Liu J, et al. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity[J]. Postharvest Biology and Technology, 2013b, 86:265-271.
[18]  Zhang H, Liu J, Hou J, et al. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity[J]. Plant Biotechnology Journal, 2014, 12(7):984-993.
[19]  Liu B, Zhang N, Zhao S, et al. Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato[J]. Plant Physiology and Biochemistry, 2015, 86:181.
[20]  Wang Z, Fang B, Chen J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato(Ipomoea batatas)[J]. BMC Genomics, 2010, 11(1):726.
[21]  Zhou W, Yang J, Hong Y, et al. Impact of amylose content on starch physicochemical properties in transgenic sweet potato[J]. Carbohydrate Polymers, 2014, (online First)doi:10. 1016/j. carbpol. 2014. 11. 003
[22]  Xu J, Duan XG, Yang J, et al. Enhanced reactive oxygen species scavenging by over-production of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots[J]. Plant Physiology, 2013, 161(3):1517-1528.
[23]  FAO(2014)FAOSTAT[DB]. http://faostat3. fao. org.
[24]  Zhang ZF, Lu J, Zheng YL, et al. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice[J]. The Journal of Nutritional Biochemistry, 2013, 24(6):1008-1018.
[25]  Shan Q, Zheng Y, Lu J, et al. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice[J]. Food and Chemical Toxicology, 2014, 69:339-346.
[26]  张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5):465-473.
[27]  张鹏, 安冬, 马秋香, 等. 木薯分子育种中若干基本科学问题的思考与研究进展[J]. 中国科学:生命科学, 2013, 43(12):1082-1089.
[28]  Sayre R, Beeching J, Cahoon E, et al. The BioCassava plus program:biofortification of cassava for sub-Saharan Africa[J]. Annual Review of Plant Biology, 2011, 62:251-272.
[29]  The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355):189-195.
[30]  Zhang N, Yang J, Wang Z, et al. Identification of novel and conserved MicroRNAs related to drought stress in potato by deep sequencing[J]. PLoS One, 2014, 9(4):e95489.
[31]  Wang W, Feng B, Xiao J, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nature Communications, 2014, 5:5110.
[32]  Zeng C, Chen Z, Xia J, et al. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava[J]. BMC Plant Biology, 2014, 14(1):207.
[33]  Li K, Zhu W, Zeng K, et al. Proteome characterization of cassava(Manihot esculenta Crantz)somatic embryos, plantlets and tuberous roots[J]. Proteome Science, 2010, 8(1):10.
[34]  Tao X, Gu YH, Wang HY, et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato[Ipomoea batatas(L. )Lam. ][J]. PLoS One, 2012, 7(4):e36234.
[35]  Gu YH, Tao X, Lai XJ, et al. Exploring the polyadenylated RNA virome of sweet potato through high-throughput sequencing[J]. PLoS One, 2014, 9(6):e98884.
[36]  Liu D, Wang L, Liu C, et al. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance[J]. PLoS One, 2014, 9(4):e93935.
[37]  Fan W, Deng G, Wang H, et al. Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato(Ipomoea batatas)[J]. Physiologia Plantarum, 2014. DOI:10.1111/ppL.12301
[38]  Zhao SS, Dufour D, Sánchez T, et al. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications[J]. Biotechnology and Bioengineering, 2011, 108(8):1925-1935.
[39]  Xu J, Yang J, Duan X, et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava(Manihot esculenta Crantz)[J]. BMC Plant Biology, 2014, 14(1):208.
[40]  Liu X, Zhang C, Ou Y, et al. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers[J]. Molecular Genetics and Genomics, 2011, 286(2):109-118.
[41]  Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis[J]. Journal Integrative Plant Biology, 2011, 53(3):193-211.
[42]  Liu B, Zhang N, Wen Y, et al. Identification of differentially expre-ssed genes in potato associated with tuber dormancy release[J]. Mol Biol Rep, 2012, 39(12):11277-11287.
[43]  Wang Z, Li J, Luo Z, et al. Characterization and development of EST-derived SSR markers in cultivated sweetpotato(Ipomoea batatas)[J]. BMC Plant Biology, 2011, 11(1):139.
[44]  赵姗姗, 杨俊, 周文智, 等. 薯类植物中的淀粉生物合成及关键酶[J]. 植物学研究, 2013, 2(1):24-33.
[45]  马秋香, 许佳, 乔爱民, 等. 木薯储藏根采后生理性变质研究进展[J]. 热带亚热带植物学报, 2009, 17(3):309-314.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133