全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

适合度分析对转基因逃逸潜在环境风险评价的意义

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.03.007, PP. 7-16

Keywords: 生物安全,转基因逃逸,生态风险评价,转基因生物,适合度效应,进化潜力

Full-Text   Cite this paper   Add to My Lib

Abstract:

转基因作物的全球大规模种植引起了全世界的广泛关注甚至争议。经过遗传改良并具有自然选择优势的转基因作物进入商品化种植,可能将带来环境生物安全的顾虑。在这些生物安全的顾虑中,转基因通过花粉介导的基因漂移向栽培作物的野生近缘种逃逸及其导致的潜在环境风险,就是世人最为关注的环境生物安全问题之一。包括中国在内的许多国家,在转基因作物进行商品化生产之前都必须对转基因逃逸及其带来的潜在环境风险进行严格评价。按照风险评价的框架,转基因向野生近缘种逃逸及其带来潜在环境风险的评价包括3个连续的步骤:1)检测转基因漂移到作物野生近缘种的频率;2)分析转基因在野生近缘种中的表达;3)确定转基因对野生近缘种群体适合度和进化潜力的影响。大量基因漂移的研究结果已表明,转基因通过基因漂移向栽培作物邻近的野生近缘种群体逃逸难以避免,而转基因也会在作物的野生近缘种群体中正常表达。因此分析和评价转基因为野生近缘种带来的适合度效应,对于转基因逃逸及其环境风险的评价至关重要。对适合度的概念及其进化意义进行介绍,并对如何利用转基因的适合度效应分析转基因逃逸的环境风险,以及对此类环境风险进行研究和评价的具体方法予以介绍。上述知识和方法的掌握将有助于人们对转基因作物环境生物安全及其评价的全面理解。

References

[1]  Ellstrand NC, Prentice HC, Hancock JF. Gene flow and introgress-ion from domesticated plants into their wild relatives[J]. Annual Review of Ecology and Systematics, 1999, 30:539-563.
[2]  Burke JM, Rieseberg LH. Fitness effects of transgenic disease resistance in sunflowers[J]. Science, 2003, 300:1250.
[3]  Halfhill MD, Sutherland JP, Moon HS, et al. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1AC and gfp transgenes[J]. Molecular Ecology, 2005, 14:3177-3189.
[4]  Yang X, Xia H, Wang W, et al. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced-generations of crop-weed hybrids of rice[J]. Evolutionary Application, 2011, 4:672-684.
[5]  Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants[J]? Proceedings of the National Academy of Sciences, 2000, 97:7043-7050.
[6]  卢宝荣. 转基因逃逸及其环境生物安全的评价方法——抗虫水稻案例分析[J]. 生物安全学报, 2015, 23(in press).
[7]  Xia H, Lu BR, Su Jun, et al. Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice:its implication in ecological biosafety assessment[J]. Theoretical and Applied Genetics, 2009, 119:635-644.
[8]  Chen LY, Snow AA, Wang F. et al. Effects of insect-resistance transgenes on fecundity in rice(Oryza sativa, Poaceae):A test for underlying costs[J]. American Journal of Botany, 2006, 93:94-101.
[9]  Rong J, Xia H, Zhu YY, et al. Asymmetric gene flow between traditional and hybrid rice varieties(Oryza sativa)estimated by nuclear SSRs and its implication in germplasm conservation[J]. New Phytologist, 2004, 163:439-445.
[10]  Rong J, Song ZP, Jong DT, et al. Modelling pollen-mediated gene flow in rice:risk assessment and management of transgene escape[J]. Plant Biotechnology Journal, 2010, 8:452-464.
[11]  Wang F, Yuan QH, Shi L, et al. A large‐scale field study of transgene flow from cultivated rice(Oryza sativa)to common wild rice(O. rufipogon)and barnyard grass(Echinochloa crusgalli)[J]. Plant Biotechnology Journal, 2006, 4:667-676.
[12]  Wang W, Xia H, Yang X, et al. A novel 5-enolpyruvoylshikimate-3-phosphate(EPSP)synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice(Oryza sativa)without herbicide[J]. New Phytologist, 2014, 202:679-688.
[13]  Lu BR, Song ZP, Chen JK, Can transgenic rice cause ecological risks through transgene escape?[J]. Progress in Natural Science, 2003, 13:17-24.
[14]  Serageldin I. Biotechnology and food security in the 21st century[J]. Science, 1999, 285:387-389.
[15]  Celis C, Scurrah M, Cowgill S. Environmental biosafety and transgenic potato in a centre of diversity for this crop[J]. Nature, 432:222-225.
[16]  Dale PJ, Clarke B, Fontes EM. Potential for the environmental impact of transgenic crops[J]. Nature Biotechnology, 2002, 20:567-574.
[17]  Stewart NC, Halfhill MD, Warwick SI. Transgene introgression from genetically modified crops to their wild relatives[J]. Nature Reviews Genetic, 2003, 4:806-817.
[18]  Lu BR. Transgene escape from GM crops and potential biosafety consequences:an environmental perspective[J]. International Centre for Genetic Engineering and Biotechnology(ICGEB), Collection of Biosafety Reviews, 2008, 4:66-141.
[19]  Ellstrand NC. Current knowledge of gene flow in plants:implica-tions for transgene flow[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2003, 358:1163-1170.
[20]  Song ZP, Lu BR, Zhu YG, et al. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions[J]. New Phytologist, 2003, 157:657-665.
[21]  Conway G, Toenniessen G. Feeding the world in the twenty-first century[J]. Nature, 1999, 402:C55-C58.
[22]  Godfray HCJ, Beddington JR, Crute IR, et al. Food security:the challenge of feeding 9 billion people[J]. 2010, Science, 327:812-818.
[23]  Fedoroff NV, Battisti DS, Beachy RN, et al. Radically rethinking agriculture for the 21st century[J]. Science, 2010, 327:833.
[24]  James C. Global Status of Commercialized Biotech/GM Crops:2014[R]. ISAAA Brief, 2014, No. 47. ISAAA:Ithaca, NY.
[25]  Bradford KJ, Van Deynze A, Gutterson N, et al. Regulating transgenic crops sensibly:lessons from plant breeding, biotechnology and genomics[J]. Nature Biotechnology, 2005, 23:439-444.
[26]  Andow DA, Zwahlen C. Assessing environmental risks of transgenic plants[J]. Ecology Letters, 2006, 9:196-214.
[27]  Ellstrand NC, Prentice HC, Hancock JF. Gene flow and introgress-ion from domesticated plants into their wild relatives[J]. Annual Review of Ecology and Systematics, 1999, 30:539-563.
[28]  Hails R, Morley K. Genes invading new populations:a risk assessment perspective[J]. TRENDS in Ecology and Evolution, 2005, 20:245-252.
[29]  Chen LJ, Lee DS, Song ZP, et al. Gene flow from cultivated rice(Oryza sativa)to its weedy and wild relatives[J]. Annals of Botany, 2004, 93:67-73.
[30]  Ellstrand NC, Meirmans P, Rong J, et al. Introgression of crop alleles into wild or weedy populations[J]. The Annual Review of Ecology, Evolution, and Systematics, 2013, 44:325-345.
[31]  Arias DM, Rieseberg LH. Gene flow between cultivated and wild sunflowers[J]. Theoretical and Applied Genetics, 1994, 89:655-660.
[32]  Lu BR, Snow AA. Gene flow from genetically modified rice and its environmental consequences[J]. BioScience, 2005, 55:669-678.
[33]  Lu BR, Yang C. Gene flow from genetically modified rice to its wild relatives:Assessing potential ecological consequences[J]. Biotechnology Advance, 2009, 27:1083-1091.
[34]  Stewart CN, All JN, Raymer PL, et al. Increased fitness of transge-nic insecticidal rapeseed under insect selection pressure[J]. Molecular Ecology, 1997, 6:773-779.
[35]  Snow AA, Pilson D, Rieseberg LH, et al. A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers[J]. Ecological Applications, 2003, 13:279-286.
[36]  Darwin C. The Origin of Species[M]. London:Murray, 1859.
[37]  Johansen-Morris AD, Latta RG. Fitness consequences of hybridization between ecotypes of Avena barbata:hybrid breakdown, hybrid vigor, and transgressive segregation[J]. Evolution, 2006, 60:1585-1595.
[38]  Zhu B, Lawrence JR, Warwick SI, et al. Stable Bacillus thuringiensis(Bt)toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer[J]. Molecular Ecology, 2004, 13:237-241.
[39]  卢宝荣, 夏辉, 杨箫, 等. 杂交-渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义[J]. 生物多样性, 2009, 17:362-377.
[40]  Cao QJ, Xia H, Yang X, et al. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments:implication for environmental biosafety assessment[J]. Journal of Integrative Plant Biology, 2009, 51:1138-1148.
[41]  Yang X, Wang F, Su J, et al. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes(Bt/CpTI)in transgenic rice field[J]. PLoS One, 2012, 7:e41220.
[42]  Rong J, Song ZP, Su J, et al. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing[J]. New Phytologist, 2005, 168:559-566.
[43]  Rong J, Lu BR, Song ZP, et al. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields[J]. New Phytologist, 2007, 173:346-353.
[44]  Cai L, Zhou B, Guo X, et al. Pollen-mediated gene flow in Chinese commercial fields of glufosinate-resistant canola(Brassica napus)[J]. Chinese Science Bulletin, 2008, 53:2333-2341.
[45]  Xia H, Chen LY, Wang F, et al. Yield benefit and underlying cost of insect-resistance transgenic rice:implication in breeding and deploying transgenic crops[J]. Field Crops Research, 2010, 118:215-220.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133