Gerth K, Washausen P, H?fle G, et al. The jerangolids: A family of new antifungal compounds from Sorangium cellulosum (myxobacteria). production, physico-chemical and biological properties of jerangolid A[J]. J Antibiot, 1996, 49: 71-75.
[2]
Mahmud T, Bode HB, Silakowski B, et al. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria[J]. J Biol Chem,
Wang JD, Zhang H, Ying LP, et al. Five new epothilone metabolites from Sorangium cellulosum strain So0157-2[J]. The Journal of Antibiotics, 2009(62):483-487.
Scheller N, Mina LB, Galao RP, et al. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates[J]. Proc Natl Acad Sci USA, 2009, 106 (32):13517-13522.
[11]
Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery[J]. Eur J Med Chem, 2011, 46(10):4769-4807.
[12]
Gerth K, Pradella S, Perlova O, et al. Myxobacteria: proficient producers of novel natural products with various biological activities -past and future biotechnological aspects with the focus on the genus Sorangium[J]. J. Biotechnol, 2003(106):233-253.
[13]
Weissman KJ, Muller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action[J]. Nat Prod Rep, 2010, 27(9): 1276-1295.
[14]
Gentzsch J, Hinkelmann B, Kaderali L, et al. Hepatitis C virus complete life cycle screen for identification of small molecules with pro-or antiviral activity[J]. Antiviral Res, 2011, 89(2):136-148.
[15]
Reichenbach H. Myxobacteria, producers of novel bioactive substances[J]. J Ind Microbiol Biotechnol, 2001, 27(3):149-156.
[16]
Kaiser D. Coupling cell movement to multicellular development in myxobacteria[J]. Nat Rev, 2003, 1(1):45-54.
[17]
Schneiker S, Perlova O, Kaiser O, et al. Complete genome sequence of the myxobacterium Sorangium cellulosum[J]. Nat Biotechnol, 2007, 25(11):1281-1289.
[18]
Rix U, Fischer C, Remsing LL, et al. Modification of post-PKS tailoring steps through combinatorial biosynthesis[J]. Nat Prod Rep, 2002, 19(5):542-580.
[19]
Bode HB, Muller R. The impact of bacterial genomics on natural product research[J]. Angew Chem Int Ed, 2005, 44(42): 6828-6846.
[20]
Lee FYF, Borzilleri R, Fairchild CR, et al. BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor activity[J]. Clin Cancer Res, genome sequence of the model actinomycete Streptomyces 2001(, 7):1429-1437. coelicolor[J]. Nature, 2002, 417(6885):141-147.
[21]
Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomy-ces avermitilis[J]. Nat Biotechnol, 2003, 21(5):526-531.
[22]
Nettles JH, Li H, Cornett B, et al. The binding mode of epothilone A on alpha-, beta-tubulin by electron crystallography[J]. Science, 2004(5):866-869.
[23]
Chou TC, O’Connor OA, Tong WP, et al. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumour xenografts in nude mice[J]. Proc Natl Acad Sci USA, 2001(98):8113-8118.
[24]
Sessa C, Perotti A, Malossi A, et al. Phase I and pharmacokinetic (PK)study of the novel epothilone BMS-310705 in patients(pts) with advanced solid cancer[J]. Proc Am Soc Clin Oncol, 2003(2):130(abstract 519).
[25]
Sessa C, Perotti A, Lladò A, et al. Phase I clinical study of the novel epothilone B analogue BMS-310705 given on a weekly schedule[J]. Ann Oncol, 2007(18):1548-1553.
[26]
Nicolaou K, Roschangar F, Vourloumis D. Chemistry and biology of epothilone[J]. Angew Chem, 1998(110):2120-2153.
[27]
Su DS, Horwitz SB, et al. Total synthesis of(3)-epothilone B: an extension of the Suzuki coupling method and insights into structure activity relationships of the epothilones[J]. Angew Chem Int Ed Engl, 1999, 36: 757-759.
[28]
Nicolaou KC, He Y, Roschangar F, et al. Total synthesis of epothilone E and analogues with modified side chains through the Stille coupling reaction[J]. Angew Chem Int Ed Engl, 1998, 37: 84-87. [42] Gerth K, Bedorf N, H?fle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria)-production, physico-chemical and biological properties[J]. J Antibiot, 1996, 49: 560-564.
[29]
Tang L, Shah S, Chung L, et al. Cloning and heterologous expression of the epothilone gene cluster[J]. Science, 2000(287):640-642.
[30]
Lau J, Frykman S, Regentin R, et al. Optimizing the heterologous production of Epothilone D in Myxococcus xanthus[J]. Biotechnol Bioeng, 2002, 78: 280-288.
[31]
Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world[J]. ACS Chem Biol, 2012, 7(2):252-259.
[32]
Newman DJ, Cragg GM. Natural products as sources of new drugs over 147 the 30 years from 1981 to 2010[J]. J Nat Prod, 2012, 75 (3):311-335.
[33]
Bode HB, Muller R. Analysis of myxobacterial secondary metabolism goes molecular[J]. J Ind Microbiol Biotechnol, 2006, 33(7): 577-588.
[34]
Nickeleit I, Zender S, Sasse F, et al. Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1)in mediating antitumor activities in response to proteasome inhibition[J]. Cancer Cell, 2008, 14(1):23-35.
[35]
Juana Diez1, Javier PM, Jordi M, et al. Myxobacteria: natural pharmaceutical factories[J]. Microbial Cell Factories, 2012, 11 (52):1-3.
[36]
Velicer GJ, Vos M. Sociobiology of the myxobacteria[J]. Annu Rev Microbiol, 2009(6):599-623.
[37]
Nan B, Chen J, Neu JC, et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force[J]. Proc Natl Acad Sci USA, 2011, 108(6):2498-2503.
[38]
Xiao Y, Wei X, Ebright R, et al. Antibiotic production by myxobacteria plays a role in predation[J]. J Bacteriol, 2011, 193 (18):4626-4633.
[39]
Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack[J]. FEMS Microbiol Rev, 2009, 33(5): 942-957.
[40]
Bon RS, Waldmann H. Bioactivity-guided navigation of chemical space[J]. Acc Chem Res, 2010, 43(8):1103-1114.
[41]
Weissman KJ, Muller R. A brief tour of myxobacterial secondary metabolism[J]. Bioorg Med Chem, 2009, 17(6):2121-2136.
[42]
Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations[J]. Curr Opin Microbiol, 2006, 9(5): 445-453.
[43]
Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete
[44]
Giannakakou P, Gussio R, Nogales E, et al. A common pharmacop-hore for epothilone and taxanes: molecular basis for drug resistan-ce conferred by tubulin mutations in human cancer cells[J]. Proc Natl Acad Sci USA, 2000(97):2904-2909.
[45]
Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interaction[J]. Chem Biol, 2003(10):597-607.
[46]
Bode CJ, Gupta ML, Reiff EA, et al. Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules[J]. Biochemistry, 2002(41):3870-3874.
[47]
Lee FY, Smykla R, Johnston K, et al. Preclinical efficacy spectrum and pharmacokinetics of ixabepilone[J]. Cancer Chemother Pharmacol, 2009,(63):201-212 [30] Mekhail T, Chung C, Holden S, et al. Phase I trial of novel epothilone B analog BMS-310705 IV q 21 days[J]. Proc Am Soc Clin Oncol, 2003(22):129(abstract 515).
[48]
Wartmann M, Altmann KH. The biology and medicinal chemistry of epothilones[J]. Curr Med Chem Anticancer Agents, 2002(2): 123-148.
[49]
Nicolaou KC, Winssinger N, Pastor J, et al. Synthesis of epothilones A and B in solid and solution phase[J]. Nature, 1997(387): 268-272.
[50]
Nicolaou KC, King NP, Finlay MR, et al. Total synthesis of epothilone E and related side chain modified analogs via a Stille coupling based strategy[J]. Bioorg Med Chem, 1999, 7: 665-697.
[51]
Yang Z, He Y, Vourloumis D, et al. Total synthesis of epothilone A: the ole ¢ n metathesis approach[J]. Angew Chem Int Ed Engl, 1997, 36: 166-168.
[52]
Sawada D, Shibasaki M. Enantioselective total synthesis of epothilone A using multifunctional asymmetric catalyses[J]. Angew Chem Int Ed, 2000, 39: 209-213.
[53]
Gerth K, Steinrich H, Hofle G, et al. Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton[J]. J Antibiotics, 2000, 53: 1373-1377.
[54]
Julien B, Shah S. Heterogonous expression of epothilone biosynthetic genes in Myxococcus xanthus[J]. Antimicrob Agents Chemother, 2002, 46: 2772-2778.
[55]
Arslanian RL, Tang L, Blough S, et al. A new cytotoxic epothilone from modified polyketide synthases heterologously expressed in Myxococcus xanthus[J]. J Nat Prod, 2002, 65: 1061-1064.
Gong GL, Jia L, Li H.Preparation and adsorption properties of mixed-templates molecularly imprinted polymers of epothilone B[J]. J ChemPharm Res, 2014, 6(3):1421-1427.
Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action[J]. Cancer Res, 1995, 55: 2325-2333.
Gong GL, Sun X, Liu XL, et al. Mutation of Sorangium cellulosum and a high-throughput screening method for improving the production of Epothilones[J]. J Ind Microbio Biot, 2007, 34: 615-623.
[62]
Hong J. Role of natural product diversity in chemical biology[J]. Curr Opin Chem Biol, 2011, 15(3):350-354.
[63]
Noueiry AO, Diez J, Falk SP, et al. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation[J]. Mol Cell Biol, 2003, 23(12):4094-4106.