Antón N, Santos-Aberturas J, Mendes MV, et al. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Microbiology, 2007, 153(9):3174-3183.
[2]
Santos-Aberturas J, Vicente CM, Payero TD, et al. Hierarchical control on polyene macrolide biosynthesis:PimR modulates pimaricin production via the PAS-LuxR transcriptional activator pimM[J]. PloS One, 2012, 7(6):1-10.
[3]
Karray F, Darbon E, Oestreicher N, et al. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens[J]. Microbiology, 2007, 153(12):4111-4122.
[4]
Nicolaou KC, Tria GS, Edmonds DJ. Total synthesis of platencin[J]. Angewandte Chemie, 2008, 120(9):1804-1807.
[5]
Liu W, Christenson SD, Standage S, et al. Biosynthesis of the enediyne antitumor antibiotic C-1027[J]. Science, 2002, 297(5584):1170-1173.
[6]
Chen YH, Yin M, Horsman GP, et al. Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus[J]. Journal of Natural Products, 2011, 74(3):420-424.
[7]
Murakami T, Burian J, Yanai K, et al. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor[J]. Proceedings of the National Academy of Sciences, 2011, 108(38):16020-16025.
[8]
Ochi K, Hosaka T. New strategies for drug discovery:activation of silent or weakly expressed microbial gene clusters[J]. Applied Microbiology and Biotechnology, 2013, 97(1):87-98.
[9]
Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL(encoding ribosomal protein S12)mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2)[J]. Journal of Bacteriology, 1996, 178(24):7276-7284.
[10]
Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic prod-uction in Streptomyces coelicolor by cumulative drug resistance mut-ations[J]. Appl Environ Microbiol, 2008, 74(9):2834-2840.
[11]
Li L, Wu J, Deng ZX, et al. Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-producing strain for ease of genetic manipulation[J]. Applied and Environmental Microbiology, 2013, 79(7):2349-2357.
[12]
Komatsu M, Komaetu K, Koiwai H, et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites[J]. ACS Synthetic Biology, 2013, 2(7):384-396.
[13]
Zhou M, Jing XY, Xie PF, et al. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor[J]. FEMS Microbiology Letters, 2012, 333(2):169-179.
[14]
Komatsu M, Tsuda M, Omura S, et al. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol[J]. PNAS, 2008, 105(21):7422-7427.
[15]
Wu J, Li L, Deng ZX, et al. Analysis of the mildiomycin biosynthesis gene cluster in Streptoverticillum remofaciens ZJU5119 and characterization of MilC, a hydroxymethyl cytosyl-glucuronic acid synthase[J]. Chem Bio Chem, 2012, 13(11):1613-1621.
[16]
Wong FT, Khosla C. Combinatorial biosynthesis of polyketides—a perspective[J]. Curr Opin Chem Biol, 2012, 16(1):117-123.
Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms[J]. Curr Opin Chem Biol, 2003, 7(2):285-295.
[22]
Watanabe K, Praseuth AP, Wang CC. A comprehensive and engag-ing overview of the type III family of polyketide synthases[J]. Curr Opin Chemi Biol, 2007, 11(3):279-286.
[23]
Laureti L, Song LJ, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proceedings of the National Academy of Sciences, 2011, 108(15):6258-6263.
Page MG. Antibiotic discovery and development[M]. Springer, 2012:79-117.
[26]
Park CN, Lee JM, Lee D, et al. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea[J]. J Microbiol Biotechnol, 2008, 18(5):880-884.
[27]
Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthe-sized by a nonribosomal machinery[J]. Journal of Biological Chemistry, 2010, 285(36):27501-27508.
[28]
Wohlleben W, Mast Y, Muth G, et al. Synthetic Biology of secondary metabolite biosynthesis in actinomycetes:Engineering precursor supply as a way to optimize antibiotic production[J]. FEBS Letters, 2012, 586(15):2171-2176.
[29]
Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation[J]. Appl Microbiol Biotechnol, 2010, 86(1):19-25.
[30]
Hertweck C, Luzhetskyy A, Rebets Y, et al. Type II polyketide synthases:gaining a deeper insight into enzymatic teamwork[J]. Natural Product Reports, 2007, 24(1):162-190.
[31]
Chiang YM, Chang SL, Oakley BR, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Current Opinion in Chemical Biology, 2011, 15(1):137-143.
[32]
Ryu YG, Butler MJ, Chater KF, et al. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor[J]. Applied and Environmental Microbiology, 2006, 72(11):7132-7139.
[33]
Antón N, Mendes MV, Martin JF, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. J Bacteriol, 2004, 186(9):2567-2575.
[34]
Jang BY, Hwang YI, Choi SU. Effects of pimM and pimR on the Increase of Natamycin Production in Streptomyces natalensis[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(1):141-144.
[35]
Juguet M, Lautru S, Francou FX, et al. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens[J]. Chemistry & Biology, 2009, 16(4):421-431.
[36]
Wang J, Kodali S, Lee SH, et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties[J]. Proc Nat Acad Sci USA, 2007, 104(18):7612-7616.
[37]
Smanski MJ, Peterson RM, Rajski SR, et al. Engineered Streptomy-ces platensis strains that overproduce antibiotics platensimycin and platencin[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(4):1299-1304.
[38]
Wang L, Hu Y, Zhang Y, et al. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globispo-rus C-1027[J]. BMC Microbiology, 2009, 9(1):1-14.
[39]
Yanai K, Murakami T, Bibb M. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus[J]. Proceedings of the National Academy of Sciences, 2006, 103(25):9661-9666.
[40]
Liao G, Li J, Li L, et al. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production[J]. Microbial Cell Factories, 2009, 9:1-6.
[41]
Yu L, Cao N, Wang L, et al. Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes[J]. Enzyme and Microbial Technology, 2012, 50(6-7):318-324.
[42]
Hu H, Zhang Q, Ochi K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene encoding the RNA polymerase beta subunit of Streptomyces lividans[J]. Journal of Bacteriology, 2002, 184(14):3984-3891.
[43]
Wang G, Inaoka T, Okamoto S, et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction[J]. Antimicrob Agents Chemothera, 2009, 53(3):1019-1026.
[44]
Hu HF, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant muta-tions[J]. App Environ Microbiol, 2001, 67(4):1885-1892.
[45]
Gomez-Escribano JP, Bibb MJ. Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor:from genome mining to manipulation of biosynthetic pathways[J]. J Industrial Microbiol Biotechnol, 2014, 41(2):425-431.
[46]
Gomez-Escribano JP, Song LJ, Fox DJ, et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145[J]. Chemical Science, 2012, 3(9):2716-2720.
[47]
Gomez-Escribano JP, Bibb MJ. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters[J]. Microbial Biotechnology, 2011, 4(2):207-215.
[48]
Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. PNASUSA, 2010, 107(6):2646-2651.
[49]
Li L, Xu ZN, Xu XY, et al. The mildiomycin biosynthesis:initial steps for sequential generation of 5-hydroxymethylcytidine 5''-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU[J]. Chem Bio Chem, 2008, 9(8):1286-1294.