K?β F, Junne S, Neubauer P, et al, Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum[J]. Microbial Cell Factories, 2014, 13:6.
[2]
Kou TC, Fan L, Zhou Y, et al. Increasing the productivity of TNFR-Fc in GS-CHO cells at reduced culture temperatures[J]. Biotechno-logy and Bioprocess Engineering, 2011, 16(1):136-143.
[3]
Tan Q, Guo Q, Fang C, et al. Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products[J]. MAbs, 2012, 4(6):761-774.
[4]
Xing Z, Kenty BM, Li ZJ, et al. Scale-up analysis for a CHO cell culture process in large-scale bioreactors[J]. Biotechnology and Bioengineering, 2009, 103(4):733-746.
[5]
Abu-Absi SF, Yang L, Thompson P, et al. Defining process design space for monoclonal antibody cell culture[J]. Biotechnol Bioeng, 2010, 106(6):894-905.
[6]
陈甘棠, 化学反应工程[M]. 第3版. 北京:化学工业出版社, 2011.
[7]
Nienow AW, Scott WH, Hewitt CJ, et al, Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture[J]. Chemical Engineering Research and Design, 2013, 91(11):2265-2274.
Yang JD, Lu C, Stasny B, et al. Fed-batch bioreactor process scale-up from 3-L to 2, 500-L scale for monoclonal antibody production from cell culture[J]. Biotechnol Bioeng, 2007, 98(1):141-54.
[10]
Gomez N, Subramanian J, Ouyang J, et al. Culture temperature modulates aggregation of recombinant antibody in cho cells[J]. Biotechnol Bioeng, 2012, 109(1):125-136.
[11]
Rodrigues ME, Costa AR, Henriques M, et al. Technological progresses in monoclonal antibody production systems[J]. Biotechnol Prog, 2010, 26(2):332-351.
[12]
Looby M, Ibarra N, Pierce JJ, et al. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein[J]. Biotechnol Prog, 2011, 27(6):1718-1729.