Neori A. “Green water” microalgae:the leading sector in world aquaculture[J]. J Appl Phycol, 2011, 23(1):143-149.
[2]
Guo Z, Liu Y, Guo H, et al. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production[J]. J Environm Sci, 2013, 25:S85-S88.
Sommer TR, Potts WT, Morrissy NM. Recent progress in the use of processed microalgae in aquaculture[J]. Hydrobiologia, 1990, 204/205:435-443.
[9]
Zhang L, Chen L, Wang J, et al. Attached cultivation for improving the biomass productivity of Spirulina platensis[J]. Bioresource Technology, 2015, 181:136-142.
[10]
Wyckmans M, Chepurnov VA, Vanreusel A, et al. Effects of food diversity on diatom selection by harpacticoid copepods[J]. J Exp Mar Biol Ecol, 2007, 345(2):119-128.
[11]
Molina E, Fernandez J, Acien FG, et al. Tubular photobioreactor design for algal cultures[J]. J Biotechnol, 2001, 92:113-131.
[12]
Mitra D, van Leeuwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products[J]. Algal Research, 2012, 1(1):40-48.
[13]
Richmond A, Cheng-Wu Z. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp outdoors[J]. J Biotechnol, 2001, 85(3):259-269.
Liu T, Wang J, Hu Q, et al. Attached cultivation technology of microalgae for efficient biomass feedstock production[J]. Bioresource Technology, 2013, 127:216-222.
[18]
Tamburic B, Zemichael FW, Crudge P, et al. Design of a novel flat-plate photobioreactor system for green algal hydrogen production[J]. Int J Hydrogen Energ, 2011, 36:6578-6591.
[19]
Huang J, Li Y, Wan M, et al. Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient[J]. Bioresource Technology, 2014, 159:8-16.
Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition:effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 2012, 110:510-516.
[23]
Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid[J]. Bioresource Technology, 2011, 102(1):88-93.
[24]
Han F, Huang J, Li Y, et al. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2[J]. Bioresource Technology, 2013, 136:418-424.
[25]
Taylor R, Fletcher RL. Cryopreservation of eukaryotic algae-a review of methodologies[J]. J Appl Phycol, 1999, 10:481-501.
[26]
Roselet F, Maicá P, Martins T, et al. Comparison of open-air and semi-enclosed cultivation system for massive microalgae production in sub-tropical and temperate latitudes[J]. Biomass and Bioenergy, 2013, 59:418-424.
Chauton MS, Reitan KI, Norsker NH, et al. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed:Research challenges and possibilities[J]. Aquaculture, 2015, 436:95-103.
[29]
Brown MR, Jeffrey SW, Volkman JK, et al. Nutritional properties of microalgae for mariculture[J]. Aquaculture, 1997, 151(1-4):315-331.
Glencross BD. Exploring the nutritional demand for essential fatty acids by aquaculture species[J]. Rev Aquacult, 2009, 1(2):71-124.
[34]
Muller-Feuga A. The role of microalgae in aquaculture:situation and trends[J]. J Appl Phycol, 2000, 12(3-5):527-534.
[35]
Raposo MF, de Morais AM, de Morais RM. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum[J]. Life Sci, 2014, 101(1-2):56-63.
[36]
Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors:a review of enclosed system designs and performances[J]. Biotechnology Progress, 2006, 22(6):1490-1506.
Silva Benavides AM, Torzillo G, Kopecky J, et al. Productivity and biochemical composition of Phaeodactylum tricornutum(Bacillariophyceae)cultures grown outdoors in tubular photobioreactors and open ponds[J]. Biomass and Bioenergy, 2013, 54:115-122.
[41]
Johns G. Microalgal feeds for aquaculture[J]. Applied Phycology, 1994, 6:131-141.
Ra CH, Kang CH, Kim NK, et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress[J]. Renew Energ, 2015, 80:117-122.
[45]
Sierra E, Acien FG, Fernandez JM, et al. Characterization of a flat plate photobioreactor for the production of microalgae[J]. Chem Eng J, 2008, 138(1-3):136-147.
[46]
Morita M, Watanabe Y, Saiki H. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microal-gae[J]. Biotechnol Bioengineer, 2000, 69(6):693-698.
Kim S, Park JE, Cho YB, et al. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144:8-13.
[49]
Perez-Garcia O, Escalante FME, de-Bashan LE, et al. Heterotrophic cultures of microalgae:Metabolism and potential products[J]. Water Research, 2011, 45(1):11-36.
[50]
Wang Y, Rischer H, Eriksen NT, et al. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids[J]. Bioresource Technology, 2013, 144:608-614.