Qing K, Khuntirat B, Mah C, et al. Adeno-associated virus type 2-mediated gene transfer:correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo[J]. J Virol, 1998, 72(2):1593-1599.
[7]
Seisenberger G, Ried MU, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus[J]. Science, 2001, 294(5548):1929-1932.
[8]
Johnson JS, Gentzsch M, Zhang L, et al. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis[J]. PLoS Pathog, 2011, 7(5):e1002053.
[9]
Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy[J]. Proc Natl Acad Sci USA, 2002, 99(18):11854-11859.
[10]
Miyake K, Miyake N, Yamazaki Y, et al. Serotype-independent method of recombinant adeno-associated virus(AAV)vector production and purification[J]. J Nippon Med Sch, 2012, 79(6):394-402.
[11]
Cheng B, Ling C, Dai Y, et al. Development of optimized AAV3 serotype vectors:mechanism of high-efficiency transduction of human liver cancer cells[J]. Gene Ther, 2012, 19(4):375-384.
[12]
Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain[J]. PLoS One, 2013, 8(9):e76310.
[13]
Perabo L, Endell J, King S, et al. Combinatorial engineering of a gene therapy vector:directed evolution of adeno-associated virus[J]. J Gene Med, 2006, 8(2):155-162.
[14]
Kienle E, Senis E, B?rner K, et al. Engineering and evolution of synthetic adeno-associated virus(AAV)gene therapy vectors via DNA family shuffling[J]. J Vis Exp, 2012, (62). pii:3819. doi:10.3791/3819
[15]
Koerber JT, Schaffer DV. Transposon-based mutagenesis generates diverse adeno-associated viral libraries with novel gene delivery properties[J]. Methods Mol Biol, 2008:434161-434170.
[16]
Marsic D, Govindasamy L, Currlin S, et al. Vector design tour de force:integrating combinatorial and rational approaches to derive novel adeno-associated virus variants[J]. Mol Ther, 2014, 22(11):1900-1909.
[17]
Engel K, Bassermann F. The ubiquitin proteasome system and its implications for oncology[J]. Dtsch Med Wochenschr, 2013, 138(22):1178-1182.
[18]
Duan D, Yue Y, Yan Z, et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus[J]. J Clin Invest, 2000, 105(11):1573-1587.
[19]
Przystal JM, Umukoro E, Stoneham CA, et al. Proteasome inhibition in cancer is associated with enhanced tumor targeting by the adeno-associated virus/phage[J]. Mol Oncol, 2013, 7(1):55-66.
Ling C, Wang Y, Zhang Y, et al. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model[J]. Hum Gene Ther, 2014, 25(12):1023-1034.
[22]
Voortman J, Giaccone G. Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient:a case report[J]. BMC Cancer, 2006, (6):129.
[23]
Zhong L, Zhao W, Wu J, et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis[J]. Mol Ther, 2007, 15(7):1323-1330.
[24]
Markusic DM, Herzog RW, Aslanidi GV, et al. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines[J]. Mol Ther, 2010, 18(12):2048-2056.
[25]
Qiao C, Zhang W, Yuan Z, et al. Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle[J]. Hum Gene Ther, 2010, 21(10):1343-1348.
[26]
Aslanidi GV, Rivers AE, Ortiz L, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors[J]. Vaccine, 2012, 30(26):3908-3917.
[27]
Dai X, Han J, Qi Y, et al. AAV-mediated lysophosphatidylcholine acyltransferase 1(Lpcat1)gene replacement therapy rescues retinal degeneration in rd11 mice[J]. Invest Ophthalmol Vis Sci, 2014, 55(3):1724-1734.
[28]
Mowat FM, Gornik KR, Dinculescu A, et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach[J]. Gene Ther, 2014, 21(1):96-105.
[29]
Ferrari FK, Samulski T, Shenk T, et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors[J]. J Virol, 1996, 70(5):3227-3234.
[30]
Qing K, Wang XS, Kube DM, et al. Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression[J]. Proc Natl Acad Sci USA, 1997, 94(20):10879-10884.
[31]
Zhong L, Chen L, Li Y, et al. Self-complementary adeno-associated virus 2(AAV)-T cell protein tyrosine phosphatase vectors as helper viruses to improve transduction efficiency of conventional single-stranded AAV vectors in vitro and in vivo[J]. Mol Ther, 2004, 10(5):950-957.
[32]
Jayandharan GR, Zhong L, Li B, et al. Strategies for improving the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo[J]. Gene Ther, 2008, 15(18):1287-1293.
Nathwani AC, Gray JT, Ng CY, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver[J]. Blood, 2006, 107(7):2653-2661.
[35]
Liu Y, Keefe K, Tang X, et al. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons:implications for axon regeneration[J]. PLoS One, 2014, 9(2):e87447.
[36]
Ding W, Yan Z, Zak R, et al. Second-strand genome conversion of adeno-associated virus type 2(AAV-2)and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia[J]. J Virol, 2003, 77(13):7361-7366.
[37]
Martino AT, Suzuki M, Markusic DM, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver[J]. Blood, 2011, 117(24):6459-6468.
[38]
Mitchell AM, Li C, Samulski RJ. Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, increasing transduction in vitro and in vivo[J]. J Virol, 2013, 87(8):4571-4583.
[39]
Ponnazhagan S, Mahendra G, Kumar S, et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands[J]. J Virol, 2002, 76(24):12900-12907.
[40]
Dalkara D, Kolstad KD, Guerin KI, et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa[J]. Mol Ther, 2011, 19(9):1602-1608.
[41]
Aslanidi GV, Rivers AE, Ortiz L, et al. Optimization of the capsid of recombinant adeno-associated virus 2(AAV2)vectors:the final threshold?[J]. PLoS One, 2013, 8(3):e59142.
[42]
Zolotukhin I, Luo D, Gorbatyuk O, et al. Improved adeno-associated viral gene transfer to murine glioma[J]. J Genet Syndr Gene Ther, 2013, 4(133):12815.
[43]
Hakim CH, Yue Y, Shin JH, et al. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs[J]. Mol Ther Methods Clin Dev, 2014, 1:14002.
[44]
Qiao C, Yuan Z, Li J, et al. Single tyrosine mutation in AAV8 and AAV9 capsids is insufficient to enhance gene delivery to skeletal muscle and heart[J]. Human Gene Therapy, Part B:Methods, 2012, 23(1):29-37.
[45]
Mah C, Qing K, Khuntirat B, et al. Adeno-associated virus type 2-mediated gene transfer:role of epidermal growth factor receptor protein tyrosine kinase in transgene expression[J]. J Virol, 1998, 72(12):9835-9843.
[46]
Qing K, Hansen J, Weigel-Kelley KA, et al. Adeno-associated virus type 2-mediated gene transfer:role of cellular FKBP52 protein in transgene expression[J]. J Virol, 2001, 75(19):8968-8976.
[47]
Qing K, Li W, Zhong L, et al. Adeno-associated virus type 2-mediated gene transfer:role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo[J]. J Virol, 2003, 77(4):2741-2746.
[48]
Zhao W, Wu J, Zhong L, et al. Adeno-associated virus 2-mediated gene transfer:role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency[J]. Gene Ther, 2007, 14(6):545-550.
[49]
Ma W, Li B, Ling C, et al. A simple method to increase the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo[J]. Hum Gene Ther, 2011, 22(5):633-640.
[50]
McCarty DM, Fu H, Monahan PE, et al. Adeno-associated virus terminal repeat(TR)mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo[J]. Gene Ther, 2003, 10(26):2112-2118.
[51]
Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo[J]. Gene Ther, 2003, 10(26):2105-2111.
[52]
Gao GP, Lu Y, Sun X, et al. High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes[J]. J Virol, 2006, 80(12):6192-6194.
Wu T, Topfer K, Lin S W, et al. Self-complementary AAVs induce more potent transgene product-specific immune responses compar-ed to a single-stranded genome[J]. Mol Ther, 2012, 20(3):572-579.
[55]
Le HT, Yu QC, Wilson JM, et al. Utility of PEGylated recombinant adeno-associated viruses for gene transfer[J]. J Control Release, 2005, 108(1):161-177.
[56]
Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B[J]. N Engl J Med, 2011, 365(25):2357-2365.
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV:progress and challenges[J]. Nat Rev Genet, 2011, 12(5):341-355.
[59]
Masat E, Pavani G, Mingozzi F. Humoral immunity to AAV vectors in gene therapy:challenges and potential solutions[J]. Discov Med, 2013, 15(85):379-389.
[60]
Hareendran S, Balakrishnan B, Sen D, et al. Adeno-associated virus(AAV)vectors in gene therapy:immune challenges and strategies to circumvent them[J]. Rev Med Virol, 2013, 23(6):399-413.
Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors:point mutations in tyrosines lead to high-efficiency transduction at lower doses[J]. Proc Natl Acad Sci USA, 2008, 105(22):7827-732.
[63]
Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway[J]. Cell Host Microbe, 2011, 10(6):563-576.
[64]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes:vector toolkit for human gene therapy[J]. Mol Ther, 2006, 14(3):316-327.
[65]
Ling C, Lu Y, Cheng B, et al. High-efficiency transduction of liver cancer cells by recombinant adeno-associated virus serotype 3 vectors[J]. J Vis Exp, 2011, (49):doo:10.3791/2538.
[66]
Ling C, Lu Y, Kalsi JK, et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3[J]. Hum Gene Ther, 2010, 21(12):1741-1747.
[67]
Markakis EA, Vives KP, Bober J, et al. Comparative transduction efficiency of AAV vector serotypes 1-6 in the substantia nigra and striatum of the primate brain[J]. Mol Ther, 2010, 18(3):588-593.
[68]
Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery[J]. Gene Ther, 2012, 19(6):694-700.
[69]
Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus(AAV)vector that crosses the seizure-compromised blood-brain barrier(BBB)[J]. Mol Ther, 2010, 18(3):570-578.
[70]
Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus(AAV)evolved by DNA shuffling and in vivo selection[J]. Proc Natl Acad Sci USA, 2009, 106(10):3946-3951.
[71]
Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors[J]. Nat Biotechnol, 2003, 21(9):1040-1046.
[72]
Varadi K, Michelfelder S, Korff T, et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors[J]. Gene Ther, 2012, 19(8):800-809.
[73]
Lisowski L, Dane AP, Chu K, et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model[J]. Nature, 2014, 506(7488):382-386.
[74]
Shen M, Schmitt S, Buac D, et al. Targeting the ubiquitin-proteasome system for cancer therapy[J]. Expert Opin Ther Targets, 2013, 17(9):1091-1108.
[75]
Mitchell AM, Samulski RJ. Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors[J]. J Virol, 2013, 87(23):13035-13041.
[76]
Yan Z, Zak R, Luxton GW, et al. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors[J]. J Virol, 2002, 76(5):2043-2053.
[77]
Jennings K, Miyamae T, Traister R, et al. Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo[J]. Mol Ther, 2005, 11(4):600-607.
[78]
Neukirchen J, Meier A, Rohrbeck A, et al. The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells[J]. Cancer Gene Ther, 2007, 14(4):431-439.
[79]
Monahan PE, Lothrop CD, Sun J, et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models:a strategy for broad clinical application[J]. Mol Ther, 2010, 18(11):1907-1916.
[80]
Wang LN, Wang Y, Lu Y, et al. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo[J]. J Integr Med, 2014, 12(1):20-34.
[81]
Rampen A J, Jongen J L, van Heuvel I, et al. Bortezomib-induced polyneuropathy[J]. Neth J Med, 2013, 71(3):128-133.
[82]
Petrucci MT, Giraldo P, Corradini P, et al. A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma[J]. Br J Haematol, 2013, 160(5):649-659.
[83]
Zhong L, Li B, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression[J]. Virology, 2008, 381(2):194-202.
[84]
Qi YF, Li QH, Shenoy V, et al. Comparison of the transduction efficiency of tyrosine-mutant adeno-associated virus serotype vectors in kidney[J]. Clin Exp Pharmacol Physiol, 2013, 40(1):53-55.
[85]
Klimczak RR, Koerber JT, Dalkara D, et al. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells[J]. PLoS One, 2009, 4(10):e7467.