全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

极端嗜热微生物及其高温适应机制的研究进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.09.005, PP. 30-37

Keywords: 极端嗜热微生物,热稳定性,高温适应机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

极端嗜热微生物在高温条件下生长繁殖,其必然具有适应高温环境的特殊细胞结构、基因类型以及生理生化机制。极端嗜热微生物的研究对探索生命的起源以及极端嗜热微生物的开发和应用具有重要意义。对极端嗜热微生物中细胞膜、核酸分子、蛋白质分子、代谢产物和辅酶的高温适应机制的研究进展进行了概述,旨为极端嗜热微生物以及来源于极端嗜热微生物的各种生物分子的开发和应用提供理论依据。

References

[1]  Bl?chl E, Rachel R, Burggraf S, et al. Pyrolobus fumarii, gen. and sp. nov. , represents a novel group of archaea, extending the upper temp-erature limit for life to 113℃[J]. Extremophiles, 1997, 1:14-21.
[2]  Mehta D, Satyanarayana T. Diversity of hot environments and thermophilic microbes[M]// Satyanarayana?T, Littlechild JA. Thermophilic Microbes in Environmental and Industrial Biotechnology. Netherlands:Springer Netherlands, 2013:3-60.
[3]  Woese CR, Kandler O, Wheelis ML. Towards a natural system of org-anisms:proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc Natl Acad Sci USA, 1990, 87(12):4576-4579.
[4]  Huber H, Hohn MJ, Rachel R, et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont[J]. Nature, 2002, 417(6884):63-67.
[5]  Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressure cultivation[J]. Proceedings of the National Academy of Sciences, 2008, 105(31):10949-10954.
[6]  Forterre P. A hot topic:the origin of hyperthermophiles[J]. Cell, 1996, 85(6):789-792.
[7]  Kelly RM, Adams MW. Metabolism in hyperthermophilic microorg-anisms[J]. Antonie Van Leeuwenhoek, 1994, 66:247-270.
[8]  Imanaka T. Molecular bases of thermophily in hyperthermophiles[J]. Proc Jap Acad Ser B Phys Biol Sci, 2010, 87:587-602.
[9]  Atomi H, Matsumi R, Imanaka T. Reverse gyrase is not a prerequ-isite for hyperthermophilic life[J]. Journal of Bacteriology, 2004, 186(14):4829-4833.
[10]  Tanaka T, Sawano M, Ogasahara K, et al. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150℃[J]. FEBS Letters, 2006, 580(17):4224-4230.
[11]  Vieille C, Zeikus GJ. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1):1-43.
[12]  Littlechild J, Novak H, James P, et al. Mechanisms of thermal stability adopted by thermophilic proteins and their use in white biotechnology[M]//Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer Netherlands, 2013:481-507.
[13]  Sterner RH, Liebl W. Thermophilic adaptation of proteins[J]. Criti Rev Biochem Mol Biol, 2001, 36(1):39-106.
[14]  Hiblot J, Bzdrenga J, Champion C, et al. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia[J]. Scientific Reports, 2015, 5:8372.
[15]  Savchenko A, Vieille C, Kang S, et al. Pyrococcus furiosus α-amylase is stabilized by calcium and zinc[J]. Biochemistry, 2002, 41(19):6193-6201.
[16]  Guelorget A, Roovers M, Guerineau V, et al. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase[J]. Nucleic Acids Research, 2010, 38(18):6206-6218.
[17]  Eichler J, Adams MW. Posttranslational protein modification in Archaea[J]. Microbiol Mol Biol Rev, 2005, 69(3):393-425.
[18]  Neves C, Da Costa MS, Santos H. Compatible solutes of the hyperthermophile Palaeococcus ferrophilus:osmoadaptation and thermoadaptation in the order Thermococcales[J]. Applied and Environmental Microbiology, 2005, 71(12):8091-8098.
[19]  Shima S, Herault DA, Berkessel A, et al. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri[J]. Archives of Microbiology, 1998, 170(6):469-472.
[20]  Van Boxstael S, Maes D, Cunin R, Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi[J]. FEBS Journal, 2005, 272(11):2670-2683.
[21]  Mukund S, Adams M. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway[J]. Journal of Biological Chemistry, 1991, 266(22):14208-14216.
[22]  Macedo-Ribeiro S, Darimont B, Sterner R, et al. Small structural changes account for the high thermostability of 1[4Fe-4S]ferredoxin from the hyperthermophilic bacterium Thermotoga maritima[J]. Structure, 1996, 4(11):1291-1301.
[23]  Zeng J, Gao XW, Dai Z, et al. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site[J]. Applied and Environmental Microbiology, 2014, 80(9):2763-2772.
[24]  Grabarse W, Vaupel M, Vorholt JA, et al. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri[J]. Structure, 1999, 7(10):1257-1268.
[25]  Dai Z, Fu HT, Zhang YF, et al. Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension[J]. Applied and Environmental Microbiology, 2012, 78(12):4233-4241.
[26]  Mayr J, Lupas A, Kellermann J, et al. A hyperthermostable protease of the subtilisin family bound to the surface layer of the Archaeon Staphylothermus marinus[J]. Curr Biol, 1996, 6:739-749.
[27]  Sterner R, Kleemann GR, Szadkowski H, et al. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer[J]. Protein Sci, 1996, 5:2000-2008.
[28]  Atomi H, Sato T, Kanai T. Application of hyperthermophiles and their enzymes[J]. Curr Opin Biotechnol, 2011, 22(5):618-626.
[29]  Stetter KO. A brief history of the discovery of hyperthermophilic life[J]. Biochem Soc Trans, 2013, 41(1):416-420.
[30]  Stetter KO. History of discovery of the first hyperthermophiles[J]. Extremophiles, 2006, 10(5):357-362.
[31]  Averhoff B, Müller V. Exploring research frontiers in microbiology:recent advances in halophilic and thermophilic extremophiles[J]. Research in Microbiology, 2010, 161(6):506-514.
[32]  Kashefi K, Lovley DR. Extending the upper temperature limit for life[J]. Science, 2003, 301(5635):934-934.
[33]  Lal AK. Origin of life[J]. Astrophys Space Sci, 2008, 317:267-278.
[34]  Stetter KO. History of discovery of hyperthermophiles[M]. Extremophiles Handbook. Springer Japan, 2011:403-425.
[35]  Mardanov AV, Svetlitchnyi VA, Beletsky AV, et al. The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs[J]. Applied and Environmental Microbiology, 2010, 76(16):5652-5657.
[36]  Jaenicke R, Sterner R. Life at High Temperatures[M]. The Prokaryotes. Berlin:Springer Berlin Heidelberg, 2013:337-374.
[37]  Daniel RM, Cowan DA. Biomolecular stability and life at high temperatures[J]. Cell Mol Life Sci, 2000, 57(2):250-264.
[38]  Ulrih NP, Gmajner D, Raspor P. Structural and physicochemical properties of polar lipids from thermophilic archaea[J]. Applied Microbiology and Biotechnology, 2009, 84(2):249-260.
[39]  Robinson H, Gao YG, Mcrary BS, et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA[J]. Nature, 1998, 392(6672):202-205.
[40]  Noon KR, Bruenger E, Mccloskey JA. Posttranscriptional modifica-tions in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus[J]. J Bacteriol, 1998, 180(11):2883-2888.
[41]  Koch R, Spreinat A, Lemke K, et al. Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei[J]. Arch Microbiol, 1991, 155(6):572-578.
[42]  Teplyakov AV, Kuranova IP, Harutyumyan EH, et al. Crystal structure of thermitase at 1. 4 ? resolution[J]. Journal of Molecular Biology, 1990, 214(1):261-279.
[43]  Coquelle N, Fioravanti E, Weik M, et al. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments[J]. J Mol Biol, 2007, 374(2):547-562.
[44]  Dong H, Mukaiyama A, Tadokoro T, et al. Hydrophobic effect on the stability and folding of a hyperthermophilic protein[J]. Journal of Molecular Biology, 2008, 378(1):264-272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133