全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

毒死蜱的环境生物学效应分析

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.08.033, PP. 225-230

Keywords: 毒死蜱,环境生物学效应,斑马鱼胚胎,神经发育毒性,内分泌干扰效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

高毒有机磷农药禁用以后,毒死蜱作为其替代品逐渐开始大规模应用。毒死蜱在水中降解缓慢,因此在水中的残留会对水生生物及其他生物造成潜在危害。为探究低浓度毒死蜱的内分泌干扰效应,使用流式细胞仪分析了其对人子宫内膜癌细胞HEC-1B生长周期的影响。为探究高浓度毒死蜱的生物毒性,将斑马鱼胚胎暴露在不同浓度的毒死蜱(0、1.0、2.0、3.0和4.0ppm)中60h,发现毒死蜱能导致斑马鱼胚胎的死亡和严重畸形,并且胚胎存活率与处理浓度呈负相关,畸形率与处理浓度呈正相关。最后,检测了毒死蜱处理后斑马鱼胚胎中5种神经系统发育相关基因的表达情况。结果表明,低浓度毒死蜱具有内分泌干扰效应,高浓度毒死蜱会影响斑马鱼神经系统的正常发育。

References

[1]  Juberg DR, Gehen SC, Coady KK, et al. Chlorpyrifos:weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid pathways[J]. Regul Toxicol Pharmacol, 2013, 66(3):249-263.
[2]  王川, 周巧红, 吴振斌. 有机磷农药毒死蜱研究进展[J]. 环境科学与技术, 2011, 34(7):123-127.
[3]  吴长兴, 赵学平, 吴声敢, 等. 丘陵地区水稻田使用毒死蜱对水体的污染及其生态风险[J]. 生态与农村环境学报, 2011, 27(3):108-112.
[4]  Marino D, Ronco A. Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina[J]. Bull Environ Contam Toxicol, 2005, 75:820-826.
[5]  Otieno PO, Schramm KW, Pfister G, et al. Spatial distribution and temporal trend in concentration of carbofuran, diazinon and chlorpyrifos ethyl residues in sediment and water in Lake Naivasha, Kenya[J]. Bull Environ Contam Toxicol, 2012, 88:526-532.
[6]  Segner H. Zebrafish(Danio rerio)as a model organism for investigating endocrine disruption[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2009, 149(2):187-195.
[7]  US EPA 2007a. United States Environmental Protection Agency. Draft list of initial pesticide active ingredients and pesticide inerts to be considered for screening under the Federal Food, Drug, and Cosmetic Act Federal Register, 2007, 72(116):33486-33503.
[8]  Farag AT, Radwan AH, Sorour F, et al. Chlorpyrifos induced reproductive toxicity in male mice[J]. Reprod Toxicol, 2010, 29(1):80-85.
[9]  Parker T, Libourel PA, Hetheridge MJ, et al. A multi-endpoint in vivo larval zebrafish(Danio rerio)model for the assessment of integrated cardiovascular function[J]. J Pharmacol Toxicol Methods, 2014, 69(1):30-38.
[10]  Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholines-terase inhibitors:uses and misuses of a common mechanism of action[J]. Environ Toxicol Pharmacol, 2005, 19(3):433-446.
[11]  Venerosi A, Calamandrei G, Ricceri L. A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure[J]. Neurotoxicol Teratol, 2006, 28(4):466-471.
[12]  Canadas F, Cardona D, Davila E, et al. Long-term neurotoxicity of chlorpyrifos:spatial learning impairment on repeated acquisition in a water maze[J]. Toxicol Sci, 2005, 85(2):944-951.
[13]  Slotkin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo:transcriptional responses of pathways for brain cell development, cell siavgnaling, cytotoxicity and neurotransmitter systems[J]. Brain Res Bull, 2007, 72(4-6):232-274.
[14]  Quinones HI, Savage TK, Battiste J, et al. Neurogenin 1(Neurog1)expression in the ventral neural tube is mediated by a distinct enhancer and preferentially marks ventral interneuron lineages[J]. Dev Biol, 2010, 340(2):283-292.
[15]  Pauls S, Zecchin E, Tiso N, et al. Function and regulation of zebrafish nkx2. 2a during development of pancreatic islet and ducts[J]. Dev Biol, 2007, 304(2):875-890.
[16]  Bernardos RL, Raymond PA. GFAP transgenic zebrafish[J]. Gene Expr Patterns, 2006, 6(8):1007-1013.
[17]  Smith JN, Hinderliter PM, Timchalk C, et al. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos:development and validation[J]. Regul Toxicol Pharmacol, 2014, 69(3):580-597.
[18]  Ferenczi J, Ambrus A, Wauchope RD, et al. Persistence and runoff losses of 3 herbicides and chlorpyrifos from a corn field in the Lake Balaton watershed of Hungary[J]. J Environ Sci Health B, 2002, 37(3):211-224.
[19]  Engeszer RE, Patterson LB, Rao AA, et al. Zebrafish in the wild:a review of natural history and new notes from the field[J]. Zebrafish, 2007, 4(1):21-40.
[20]  Parng C. In vivo zebrafish assays for toxicity testing[J]. Curr Opin Drug Discov Devel, 2005, 8(1):100-106.
[21]  Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals:an Endocrine Society scientific statement[J]. Endocr Rev, 2009, 30(4):293-342.
[22]  Mills LJ, Chichester C. Review of evidence:are endocrine-disrupting chemicals in the aquatic environment impacting fish populations?[J]. Sci Total Environ, 2005, 343(1-3):1-34.
[23]  Nishi K, Hundal SS. Chlorpyrifos induced toxicity in reproductive organs of female Wistar rats[J]. Food Chem Toxicol, 2013, 62:732-738.
[24]  Mangipudy R, Burkhardt J, Kadambi VJ. Use of animals for toxicology testing is necessary to ensure patient safety in pharmaceutical development[J]. Regul Toxicol Pharmacol, 2014, 70(2):439-441.
[25]  Beasley A, Elrod-Erickson M, Otter RR. Consistency of morpholo-gical endpoints used to assess developmental timing in zebrafish(Danio rerio)across a temperature gradient[J]. Reprod Toxicol, 2012, 34(4):561-567.
[26]  Scholz S. Zebrafish embryos as an alternative model for screening of drug-induced organ toxicity[J]. Arch Toxicol, 2013, 87(5):767-769.
[27]  Eaton DL, Daroff RB, Autrup H, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevel-opment[J]. Crit Rev Toxicol, 2008, 38(Suppl 2):1-125.
[28]  Fan CY, Cowden J, Simmons SO, et al. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening[J]. Neurotoxicol Teratol, 2010, 32(1):91-98.
[29]  Xue XJ, Yuan XB. Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells[J]. Mol Cell Neurosci, 2010, 45(1):26-36.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133