Moore ER, Krüger AS, Hauben L, et al. 16S rRNA gene sequence analyses and inter-and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia[J]. FEMS Microbiology Letters, 1997, 151(2):145-153.
[2]
Romanenko LA, Uchino M, Tanaka N, et al. Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep-sea invertebrates[J]. Arch Microbiol, 2008, 189(4):337-344.
[3]
Berg G, Marten P, Ballin G. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape—occurrence, characterization and interaction with phytopathogenic fungi[J]. Microbiological Research, 1996, 151(1):19-27.
Turrientes MC, Baquero MR, Sánchez MB, et al. Polymorphic muta-tion frequencies of clinical and environmental Stenotrophomonas maltophilia populations[J]. Applied and Environmental Microb-iology, 2010, 76(6):1746-1758.
[6]
Hugh R, Ryschenkow E. Pseudomonas maltophilia, an Alcaligenes-like species[J]. Journal of General Microbiology, 1961, 26(1):123-132.
[7]
Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia(Hugh 1980)Swings et al. 1983[J]. International Journal of Systematic Bacteriology, 1993, 43(3):606-609.
Juhasz AL, Stanley GA, Britz ML. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10, 003[J]. Letters in Applied Microbiology, 2000, 30(5):396-401.
[11]
Gür Ö, Özdal M, Algur ÖF. Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2[J]. Turkish Journal of Biology, 2014, 38:684-689.
[12]
Lu Z, Sang L, Li Z, et al. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution[J]. Ecotoxicol Environ Saf, 2009, 72(1):136-143.
[13]
Benson SB, Osborne TR, Revis NW. Reduction of trace elements to the elemental form by microorganisms:United States, 4728427[P]1988. 1. 3.
[14]
Holmes A, Vinayak A, Benton C, et al. Comparison of two multimetal resistant bacterial strains:Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2[J]. Current Microbiology, 2009, 59(5):526-531.
[15]
Fauchon M, Lagniel G, Aude JC, et al. Sulfur sparing in the yeast proteome in response to sulfur demand[J]. Molecular Cell, 2002, 9(4):713-723.
[16]
Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants[J]. Genome Biology, 2008, 9(4):R74.
[17]
Berg G, Roskot N, Steidle A, et al. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants[J]. Applied and environmental Microbiology, 2002, 68(7):3328-3338.
[18]
Chelius MK, Triplett EW. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L.[J]. Applied and Environmental Microbiology, 2000, 66(2):783-787.
[19]
Germida J, Siciliano S. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars[J]. Biology and Fertility of Soils, 2001, 33(5):410-415.
[20]
Sturz A, Matheson B, Arsenault W, et al. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils[J]. Canadian Journal of Microbiology, 2001, 47(11):1013-1024.
[21]
Vendan RT, Yu YJ, Lee SH, et al. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion[J]. The Journal of Microbiology, 2010, 48(5):559-565.
Ryan RP, Monchy S, Cardinale M, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas[J]. Nat Rev Microbiol, 2009, 7(7):514-525.
[25]
Swiontek Brzezinska M, Jankiewicz U, Burkowska A, et al. Chitinolytic microorganisms and their possible application in environmental protection[J]. Curr Microbiol, 2014, 68(1):71-81.
[26]
Nakayama T, Homma Y, Hashidoko Y, et al. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease[J]. Applied and Environmental Microbiology, 1999, 65(10):4334-4339.
[27]
Dunne C, Moënne-Loccoz Y, de Bruijn FJ, et al. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81[J]. Microbiology, 2000, 146(8):2069-2078.
[28]
Kobayashi DY, Guglielmoni M, Clarke BB. Isolation of the chitinolytic bacteria xanthomonas maltophilia and serratia marcescens as biological control agents for summer patch disease of turfgrass[J]. Soil Biology and Biochemistry, 1995, 27(11):1479-1487.
[29]
Bird AF, Bird J. The structure of nematodes[M]. Burlington:Academic Press, 1991.
[30]
Perry RN, Wright DJ. The physiology and biochemistry of free-living and plant-parasitic nematodes[M]. CAB International, 1998.
[31]
Cronin D, Moënne-Loccoz Y, Dunne C, et al. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria[J]. European Journal of Plant Pathology, 1997, 103(5):433-440.
Denton M, Kerr KG. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia[J]. Clinical Microbiology Reviews, 1998, 11(1):57-80.
[42]
Minkwitz A, Berg G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia[J]. J Clin Microbiol, 2001, 39(1):139-145.
[43]
Park M, Kim C, Yang J, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea[J]. Microbiol Res, 2005, 160(2):127-133.
[44]
Binks PR, Nicklin S, Bruce NC. Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine(RDX)by Stenotrophomonas maltophilia PB1[J]. Applied and Environmental Microbiology, 1995, 61(4):1318-1322.
[45]
Elvers K, Leeming K, Lappin-Scott H. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum [J]. Journal of Industrial Microbiology and Biotechnology, 2001, 26(3):178-183.
[46]
Fuerst J, Hayward A. Surface appendages similar to fimbriae(pili)on Pseudomonas species[J]. Journal of General Microbiology, 1969, 58(2):227-237.
[47]
Ikemoto S, Suzuki K, Kaneko T, et al. Characterization of strains of Pseudomonas maltophilia which do not require methionine[J]. International Journal of Systematic Bacteriology, 1980, 30(2):437-447.
[48]
Swings J, De Vos P, den Mooter MV, et al. Transfer of Pseudomonas maltophilia hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia(Hugh 1981)comb. nov[J]. International Journal of Systematic Bacteriology, 1983, 33(2):409-413.
Gao S, Seo JS, Wang J, et al. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6[J]. International Biodeterioration & Biodegradation, 2013, 79(Complete):98-104.
[52]
John R, Essien J, Akpan S, et al. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6):1014-1019.
[53]
Juhasz AL, Stanley G, Britz M. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10, 003[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(2):88-96.
Urszula G, Izabela G, Danuta W, et al. Isolation and characteriza-tion of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation[J]. Brazilian Journal of Microbiology, 2009, 40(2):285-291.
[56]
Lee EY, Jun YS, Cho KS, et al. Degradation Characteristics of Toluene, Benzene, Ethylbenzene, and Xylene byStenotrophomonas maltophiliaT3-c[J]. Journal of the Air & Waste Management Association, 2002, 52(4):400-406.
[57]
Pages D, Rose J, Conrod S, et al. Heavy metal tolerance in Stenotrophomonas maltophilia[J]. PLoS One, 2008, 3(2):e1539.
[58]
Antonioli P, Lampis S, Chesini I, et al. Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices[J]. Appl Environ Microbiol, 2007, 73(21):6854-6863.
Mahaffee W, Kloepper J. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber(Cucumis sativus L.)[J]. Microbial Ecology, 1997, 34(3):210-223.
[61]
Schwieger F, Tebbe CC. Effect of field inoculation with Sinorhizob-ium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant(Medicago sativa)and a non-target plant(Chenopodium album)—linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria[J]. Applied and Environmental Microbiology, 2000, 66(8):3556-3565.
[62]
Mehnaz S, Mirza MS, Haurat J, et al. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice[J]. Canadian Journal of Microbiology, 2001, 47(2):110-117.
[63]
Taghavi S, Garafola C, Monchy S, et al. Mechanisms underlying the beneficial effects of endophytic bacteria on growth and development of poplar[J]. Applied and Environmental Microbiology, 2009, 75:748-757.
[64]
Naz I, Bano A. Assessment of phyohormones producing capacity of stenotrophomonas maltophilia SSA and its interaction with zea maysl[J]. Pakistan Journal of Botany, 2012, 44(1):465-469.
[65]
Suckstorff I, Berg G. Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins[J]. Journal of Applied Microbiology, 2003, 95(4):656-663.
[66]
Lund P, Lee RY, Dunsmuir P. Bacterial chitinase is modified and secreted in transgenic tobacco[J]. Plant Physiology, 1989, 91 (1):130-135.
[67]
Suma K, Podile AR. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities[J]. Bioresour Technol, 2013, 133:213-220.
[68]
Kobayashi DY, Reedy RM, Bick J, et al. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control[J]. Applied and Environmental Microbiology, 2002, 68(3):1047-1054.
[69]
Jakobi M, Winkelmann G, Kaiser D, et al. Maltophilin:a new antifungal compound produced by Stenotrophomonas maltophilia R3089[J]. The Journal of Antibiotics, 1996, 49(11):1101-1104.
[70]
Dal Bello G, Monaco C, Simon M. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms[J]. World Journal of Microbiology and Biotechnology, 2002, 18(7):627-636.
[71]
Messiha NAS, van Diepeningen AD, Farag NS, et al. Stenotrophomonas maltophilia:a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot[J]. European Journal of Plant Pathology, 2007, 118(3):211-225.
[72]
Zhang Z, Yuen G, Sarath G, et al. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3[J]. Phytopathology, 2001, 91(2):204-211.
[73]
Mcclure MA, Bird A. The tylenchid(Nematoda)egg shell:formation of the egg shell in Meloidogyne javanica[J]. Parasitology, 1976, 72(1):29-39.
[74]
Fegan N. The interaction between chitinolytic bacteria and nematode eggs[D]. Queensland:The University of Queensland, 1993:199.
[75]
Insunza V, Alström S, Eriksson K. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato[J]. Plant and Soil, 2002, 241(2):271-278.
78 (College of Forestry,Nanjing Forestry University,Nanjing 210037)
[81]
79 Abstract: Stenotrophomonas maltophilia is a gram-negative bacterium and widely distributed in nature. It has multiple dioxygenase that can biodegrade alkane and polycyclic aromatic hydrocarbons (PAHs), and also adsorb heavy metals. S. maltophilia is a kind of typical plant growth-promoting rhizobacteria. It can secrete various hydrolytic enzymes and secondary metabolites that enhance plant growth, prevent and control fungal diseases along with nematode. Owing to the above features, S. maltophilia possesses the significant application values in environmental remediation, agriculture and forestry. The mechanisms of bioremediation and plant growth-promoting of S. maltophilia are summarized, which is expected to provide a reference for further studies and application of S. maltophilia.