全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

拟南芥AMP1负调控植物对高盐胁迫的反应

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.07.012, PP. 76-82

Keywords: AMP1,高盐胁迫,ZAT10/12,RD29A

Full-Text   Cite this paper   Add to My Lib

Abstract:

高盐胁迫严重影响植物的生长发育及农作物产量,因此鉴定盐胁迫响应相关基因至关重要。拟南芥的AMP1编码一个推测的谷氨酸羧肽酶,参与植物的生长发育、光形态建成与种子休眠。研究证明了AMP1的一个新功能,它的缺失提高了缺失突变体amp1的抗高盐胁迫的能力,研究证明amp1突变体的强抗高盐胁迫表型一方面是由于在高盐胁迫下amp1突变体比野生型中积累了更多的甜菜碱和脯氨酸降低了突变体细胞的水势,另一方面高盐胁迫条件下amp1突变体中高盐胁迫响应的下游基因RD29A,以及AHA3的表达量也高于野生型,后者可促进Na+的外排;高盐条件能够对植物造成氧化胁迫,研究发现AMP1的缺失还上调了抗氧化相关基因ZAT10/12的表达量,进而降低了在高盐胁迫条件下amp1突变体内过氧化物的积累水平,减轻对细胞的损伤和生长的抑制,这些都提高了amp1突变体的抗高盐胁迫的能力。以上结果证明在拟南芥中AMP1负调控植物对高盐胁迫的反应过程。

References

[1]  Zhuang JL, Shi H. Physiological and molecular mechanism of plant salt tolerance[J]. Photosynth Res, 2013, 115:1-22.
[2]  Liu WZ, Kong DD, Gu XX, et al. Cytokinins can act as suppressors of nitric oxide in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2013, 110(4):1548-1553.
[3]  Chaudhury AM, Letham S, Craig S, et al. amp1—a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering[J]. Plant J, 1993, 4:907-916.
[4]  Nogué F, Grandjean O, Craig S, et al. Higher levels of cell proliferation rate and cyclin CycD3 expression in the Arabidopsis amp1 mutant[J]. Plant Growth Regul, 2000, 32(2-3):275-283.
[5]  Ariel F, Brault-Hernandez M, Laffont C, et al. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula[J]. Plant Cell, 2012, 24:3838-3852.
[6]  Shi HT, Ye TT, Chen FF, et al. Manipulation of arginase expression modulate abiotic stress tolerance in Arabidopsis:effent on arginine metabolism and ROS accumulation[J]. L Exp Bot, 2013, 64:1367-1397.
[7]  Xie Y, Ling T, Han Y, et al. Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots[J]. Plant Cell Environ, 2008, 31:1864-1881.
[8]  Han Y, Zhang J, Chen X, et al. Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa[J]. New Phytol, 2008, 177:155-166.
[9]  Lv WT, Lin B, Zhang M, et al. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress[J]. Plant Physiol, 2011, 156:1921-1933.
[10]  Visnovitz T, Solti A, Csikó G, et al. Plasma membrane H+-ATPase gene expression, protein level and activity in growing and non-growing regions of barley(Hordeum vulgare)leaves[J]. Physiol Plant, 2012, 144:382-393.
[11]  Suzuki N, Koussevitzky S, Mittler R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, Cell & Environment, 2012, 35:259-270.
[12]  Mittler R, Kim Y, Song L, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J]. FEBS Lett, 2006, 580:6537-6542.
[13]  Zhang S, Qi Y, Liu M, et al. SUMOE3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana[J]. J Integr Plant Biol, 2013, 55:83-95.
[14]  Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiol, 2006, 141:391-396.
[15]  Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2):239-250.
[16]  Zhang X, Lu G, Long W, et al. Recent progress in drought and salt tolerance studies in Brassica crops[J]. Breed Sci, 2014, 64(1):60-73.
[17]  Shi Y, Wang Z, Meng P, et al. The glutamate carboxypeptidase AMP1 mediates abscisic acid and abiotic stress responses in Arabidopsis[J]. New Phytol, 2013, 199(1):135-150.
[18]  Chin-Atkins AN, Craig S, Hocart CH, et al. Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses[J]. Planta, 1996, 198(4):549-556.
[19]  Ristic Z, Ashworth EN. Ultrastructural evidence that intracellular ice formation and possibly cavitation are the sources of freezing injury in supercooling wood tissue of Cornus florida L[J]. Plant Physiol, 1993, 103:753-761.
[20]  Han Y, Zhang J, Chen X, et al. Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of edicagosativa[J]. New Phytol, 2008, 177:155-166.
[21]  Shi H, Xiong L, Stevenson B, et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance[J]. The Plant Cell, 2002, 14:575-588.
[22]  Kim K, Jang YJ, Lee SM, et al. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants[J]. Mol Cells, 2014, 37(2):109-117.
[23]  Zhu JK. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6, 66-71.
[24]  Shi HT, Li RJ, Cai W, et al. Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance[J]. Plant Cell Physiol, 2012, 53:344-357.
[25]  Shi HT, Ye TT, Chen FF, et al. Manipulation of arginase expression modulate abiotic stress tolerance in Arabidopsis:effect on arginine metabolism and ROS accumulation[J], J Exp Bot, 2013, 64:1367-1379.
[26]  Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J]. Physiol Plant, 2008, 133:481-489.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133