Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Upregulation of antioxidant enzymes by exogenous gallic acid contributes to the amelioration in Oryza sativa roots exposed to salt and osmotic stress[J]. Environ Sci Pollut Res, 2015, 22(2):1487-1497.
[7]
Wang H, Zhou Y, Bird DA, Fowke LC. Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors[J]. J Microsc, 2008, 231(2):234-246.
[8]
Gupta K, Jha B, Agarwal PK. A dehydration-responsive element binding(DREB)transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco[J]. Mar Biotechnol, 2014, 16(6):657-673.
Lv S, Zhang KW, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J]. Plant Cell Physiol, 2008, 49(8):1150-1164.
[11]
Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnol J, 2011, 9(1):88-99.
[12]
Zsigmond L, Szepesi A, Tari I, et al. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis[J]. Plant Sci, 2012, 182:87-93.
[13]
Sultana S, Khew CY, Morshed MM, et al. Overexpression of monodehydroascorbate reductase from a mangrove plant(AeMDHAR)confers salt tolerance on rice[J]. J Plant Physiol, 2012, 169(3):311-318.
[14]
Zhou ML, Ma JT, Zhao YM, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene, 2012, 506(1):10-17.
[15]
Ying S, Zhang DF, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2):253-266.
[16]
Zhang Y, Li Y, Lai J, et al. Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis[J]. Mol Biol Rep, 2012, 39(4):4627-4633.
[17]
Zou J, Liu C, Liu A, et al. Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice[J]. J Plant Physiol, 2012, 169(6):628-635.
[18]
Zhou M, Li D, Li Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiol, 2013, 161(3):1375-1391.
Sreenivasulua N, Soporyb SK, Kavi Kishorc PB, et al. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches[J]. Gene, 2007, 388(1-2):1-13.
Hu CA, Delauney AJ, Verma DPS. A bifunctional enzyme(delta 1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci USA, 1992, 89(19):9354-9358.
Noreen S, Ashraf M, Hussain M, et al. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sun-flower(Helianthus annuus L .)plants[J]. Pakistan Journal of Botany, 2009, 41(1):473-479.
[26]
He HY, He LF. The role of carbon monoxide signaling in the responses of plants to abiotic stresses[J]. Nitric Oxide, 2014, 42:40-43.
[27]
Zhu JK. Plant salt tolerance[J]. TRENDS in Plant Science, 2001, 6(2):66-71.
Li B, Li N, Duan XG, et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system[J]. J Biotechnol, 2010, 145(2):206-213.
[33]
Yang A, Dai X, Zhang WH, et al. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. J Exp Bot, 2012, 63(7):2541-2556.
[34]
Zhang Z, Wang J, Zhang R, et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J]. Plant J, 2012, 71(2):273-287.
[35]
Baisakh N, RamanaRao MV, Rajasekaran K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora L?isel[J]. Plant Biotechnol J, 2012, 10(4):453-464.
[36]
Gao SQ, Chen M, Xia LQ, et al. A cotton(Gossypium hirsutum)DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Rep, 2009, 28(2):301-311.
[37]
Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804.
[38]
Badran EG, Abogadallah GM, Nada RM, Nemat Alla MM. Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat[J]. Protoplasma, 2015, 252(3):835-844.