全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微量热泳动技术原理及其在研究生物分子互作方面的应用

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.06.010, PP. 67-73

Keywords: 微量热泳动,互作分析,结合性研究,生物分子间互作

Full-Text   Cite this paper   Add to My Lib

Abstract:

微量热泳动(MST)技术是近年来兴起的一项用于研究生物分子间互作的新技术。其检测是基于热泳动现象,即分子在温度梯度中的定向运动及由此引起分子性质的变化,如分子大小、电荷和水化层及构象等。该方法把精确的荧光检测与灵敏的热泳动相结合,从而提供了一个灵敏的、快速的精确分析生物分子间互作的检测方法。就MST的工作原理和检测过程及其在生物学研究中的应用作以综述。

References

[1]  Geddes CD, Lakowicz JR. Reviews in fluorescence[M]. Springer, 2011, XII.
[2]  Masi A, Cicchi R, Carloni A, et al. Optical methods in the study of protein-proteinintera-c-tions[J]. Adv Exp Med Biol, 2010, 674:33-42.
[3]  Ludwig C. Diffusion zwischen ungleich erw?rmten Orten gleich zusammengesetzter L?s-u-n-g--en[J]. Sitzungsber Akad Wiss Wien Math-Naturwiss, 1856, 20:539.
[4]  Wienken CJ, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids u-sing microscale thermophoresis[J]. Nat Commun, 2010, 1:100.
[5]  Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions:application to components of the Escherichia coli lactose operon regulatory system[J]. Nucleic Acids Res, 1981, 9(13):3047-3060.
[6]  Hellman LM, Fried MG. Electrophoretic mobility shift assay(EMSA)for detecting protein-nucleic acid interactions[J]. Nat Protoc, 2007, 2(8):1849-1861.
[7]  Hanlon AD, Larkin MI, Reddick RM. Free-solution, label-free protein-protein interactions characterized by dynamic light scattering[J]. Biophys J, 2010, 98(2):297-304.
[8]  Lea WA, Simeonov A. Fluorescence polarization assays in small molecule screening[J]. Expert Opin Drug Discov, 2011, 6(1):17-32.
[9]  Zillner K, Jerabek-Willemsen M, Duhr S, et al. Microscale thermop-horesis as a sensitive method to quantify protein:nucleic acid inter-actions in solution[J]. Methods Mol B-i--ol, 2012, 815:241-252.
[10]  Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315.
[11]  Kawahashi Y, Doi N, Takashima H, et al. In vitro protein microarrays for detecti-n-g prote-i-n-protein interactions:application of a new method for fluorescence labeling of protei-n-s[J]. Pro-teomics, 2003, 3(7):1236-1243.
[12]  Baaske P, Wienken CJ, Reineck P, et al. Optical thermophoresis for quantifying t-he buff-e-r dependence of aptamer binding[J]. Angew Chem Int Ed Engl, 2010, 49(12):2238-2241.
[13]  Martin D, Charpilienne A, Parent A, et al. The rotavirus nonstructural protein NSP5 coor-d-inates a[2Fe-2S]iron-sulfur cluster that modulates interaction to RNA[J]. FASEB J, 2013, 27(3):1074-1083.
[14]  Uzarska MA, Dutkiewicz R, Freibert SA, et al. The mitochondrial Hsp70 ch-a-perone Ss-q-1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation[J]. Mol ---Biol Cell, 2013, 24(12):1830-1841.
[15]  宋水山. N-酰基高丝氨酸内酯介导的细菌与其真核寄主之间的信息交流[J]. 中国细胞生物学学报, 2010(2):331-335.
[16]  Ha T, Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging[J]. Annu Rev Phys Chem, 2012, 63:595-617.
[17]  Maiti S, Haupts U, Webb WW. Fluorescence correlation spectros-copy:diagnostics f-o--r sp-a----rse molecules[J]. Proc Natl Acad Sci USA, 1997, 94(22):11753-11757.
[18]  Duhr S, Braun D. Thermophoretic depletion follows Boltzmann distribution[J]. Phys R-ev L-ett, 2006, 96(16):168301.
[19]  Duhr S, Braun D. Why molecules move along a temperature gradient[J]. Proc Natl A-cad Sci USA, 2006, 103(52):19678-19682.
[20]  Jerabek-Willemsen M, Wienken CJ, Braun D, et al. Molecular interaction stu-dies using m-icroscale thermophoresis[J]. Assay Drug Dev Technol, 2011, 9(4):342-353.
[21]  Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies bi-o---mol-e-cular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315.
[22]  Engvall E, Perlmann P. Enzyme-linked immunosorbent assay(ELISA). Quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9):871-874.
[23]  Fujime S, Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light[J]. J Mol Biol, 1971, 62(1):251-265.
[24]  Dandliker WB, Feigen GA. Quantification of the antigen-antibody reaction by the polarization of fluorescence[J]. Biochem Biophys Res Commun, 1961, 5:299-304.
[25]  Baksh MM, Kussrow AK, Mileni M, et al. Label-free quantification of membrane-ligand interactions using backscattering interferometry[J]. Nat Biotechnol, 2011, 29(4):357-360.
[26]  Seidel SA, Wienken CJ, Geissler S, et al. Label-free microscale thermophoresis discrim-i-nates sites and affinity of protein-ligand binding[J]. Angew Chem Int Ed Engl, 2012, 51(42):10656-10659.
[27]  Jerabek-Willemsen M, Andr T, Wanner R, et al. MicroScale Thermophoresis:I-nteraction a-nalysis and beyond[J]. Journal of Molecular Structure, 2014, 1077:101-113.
[28]  Hohsaka T, Abe R, Shiraga K, et al. Incorporation of fluorescently labeled nonnat-u-ral am-i-no acids into proteins in an E. coli in vitro translation system[J]. Nucleic Acids Res S-uppl, 2003(3):271-272.
[29]  Serwa R, Wilkening I, Del Signore G, et al. Chemoselective Staudinger-phosphitereaction of azides for the phosphorylation of proteins[J]. Angew Chem Int Ed Engl, 2009, 48(44):8234-8239.
[30]  Wienken CJ, Baaske P, Duhr S, et al. Thermophoretic melting curves quantify theconfor-mation and stability of RNA and DNA[J]. Nucleic Acids Res, 2011, 39(8):e52.
[31]  Pham TH, Minderjahn J, Schmidl C, et al. Mechanisms of in vivo binding site selectionof the hematopoietic master transcription factor PU. 1[J]. Nucleic Acids Res, 2013, 41(13):6391-6402.
[32]  Keren-Kaplan T, Attali I, Estrin M, et al. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding[J]. EMBO J, 2013, 32(4):538-551.
[33]  Immekus F, Barandun LJ, Betz M, et al. Launching spiking ligands into a prote-i-n-proteininterface:a promising strategy to destabilize and break interface formation in a tRN-A modify-in-g enzyme[J]. ACS Chem Biol, 2013, 8(6):1163-1178.
[34]  Shang X, Marchioni F, Evelyn CR, et al. Small-molecule inhibitors targeting G-p-rotein-co-upled Rho guanine nucleotide exchange factors[J]. Proc Natl Acad Sci USA, 2013, 110(8):3155-3160.
[35]  Van Den Bogaart G, Meyenberg K, Diederichsen U, et al. Phosphatidylinos-i--t-ol 4, 5-bisph-o-sphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold[J]. Journal of Bio-l--o-gical Chemistry, 2012, 287(20):16447-16453.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133