Geddes CD, Lakowicz JR. Reviews in fluorescence[M]. Springer, 2011, XII.
[2]
Masi A, Cicchi R, Carloni A, et al. Optical methods in the study of protein-proteinintera-c-tions[J]. Adv Exp Med Biol, 2010, 674:33-42.
[3]
Ludwig C. Diffusion zwischen ungleich erw?rmten Orten gleich zusammengesetzter L?s-u-n-g--en[J]. Sitzungsber Akad Wiss Wien Math-Naturwiss, 1856, 20:539.
[4]
Wienken CJ, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids u-sing microscale thermophoresis[J]. Nat Commun, 2010, 1:100.
[5]
Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions:application to components of the Escherichia coli lactose operon regulatory system[J]. Nucleic Acids Res, 1981, 9(13):3047-3060.
Lea WA, Simeonov A. Fluorescence polarization assays in small molecule screening[J]. Expert Opin Drug Discov, 2011, 6(1):17-32.
[9]
Zillner K, Jerabek-Willemsen M, Duhr S, et al. Microscale thermop-horesis as a sensitive method to quantify protein:nucleic acid inter-actions in solution[J]. Methods Mol B-i--ol, 2012, 815:241-252.
[10]
Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315.
[11]
Kawahashi Y, Doi N, Takashima H, et al. In vitro protein microarrays for detecti-n-g prote-i-n-protein interactions:application of a new method for fluorescence labeling of protei-n-s[J]. Pro-teomics, 2003, 3(7):1236-1243.
[12]
Baaske P, Wienken CJ, Reineck P, et al. Optical thermophoresis for quantifying t-he buff-e-r dependence of aptamer binding[J]. Angew Chem Int Ed Engl, 2010, 49(12):2238-2241.
[13]
Martin D, Charpilienne A, Parent A, et al. The rotavirus nonstructural protein NSP5 coor-d-inates a[2Fe-2S]iron-sulfur cluster that modulates interaction to RNA[J]. FASEB J, 2013, 27(3):1074-1083.
[14]
Uzarska MA, Dutkiewicz R, Freibert SA, et al. The mitochondrial Hsp70 ch-a-perone Ss-q-1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation[J]. Mol ---Biol Cell, 2013, 24(12):1830-1841.
Ha T, Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging[J]. Annu Rev Phys Chem, 2012, 63:595-617.
[17]
Maiti S, Haupts U, Webb WW. Fluorescence correlation spectros-copy:diagnostics f-o--r sp-a----rse molecules[J]. Proc Natl Acad Sci USA, 1997, 94(22):11753-11757.
Duhr S, Braun D. Why molecules move along a temperature gradient[J]. Proc Natl A-cad Sci USA, 2006, 103(52):19678-19682.
[20]
Jerabek-Willemsen M, Wienken CJ, Braun D, et al. Molecular interaction stu-dies using m-icroscale thermophoresis[J]. Assay Drug Dev Technol, 2011, 9(4):342-353.
[21]
Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies bi-o---mol-e-cular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315.
[22]
Engvall E, Perlmann P. Enzyme-linked immunosorbent assay(ELISA). Quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9):871-874.
[23]
Fujime S, Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light[J]. J Mol Biol, 1971, 62(1):251-265.
[24]
Dandliker WB, Feigen GA. Quantification of the antigen-antibody reaction by the polarization of fluorescence[J]. Biochem Biophys Res Commun, 1961, 5:299-304.
[25]
Baksh MM, Kussrow AK, Mileni M, et al. Label-free quantification of membrane-ligand interactions using backscattering interferometry[J]. Nat Biotechnol, 2011, 29(4):357-360.
[26]
Seidel SA, Wienken CJ, Geissler S, et al. Label-free microscale thermophoresis discrim-i-nates sites and affinity of protein-ligand binding[J]. Angew Chem Int Ed Engl, 2012, 51(42):10656-10659.
[27]
Jerabek-Willemsen M, Andr T, Wanner R, et al. MicroScale Thermophoresis:I-nteraction a-nalysis and beyond[J]. Journal of Molecular Structure, 2014, 1077:101-113.
[28]
Hohsaka T, Abe R, Shiraga K, et al. Incorporation of fluorescently labeled nonnat-u-ral am-i-no acids into proteins in an E. coli in vitro translation system[J]. Nucleic Acids Res S-uppl, 2003(3):271-272.
[29]
Serwa R, Wilkening I, Del Signore G, et al. Chemoselective Staudinger-phosphitereaction of azides for the phosphorylation of proteins[J]. Angew Chem Int Ed Engl, 2009, 48(44):8234-8239.
[30]
Wienken CJ, Baaske P, Duhr S, et al. Thermophoretic melting curves quantify theconfor-mation and stability of RNA and DNA[J]. Nucleic Acids Res, 2011, 39(8):e52.
[31]
Pham TH, Minderjahn J, Schmidl C, et al. Mechanisms of in vivo binding site selectionof the hematopoietic master transcription factor PU. 1[J]. Nucleic Acids Res, 2013, 41(13):6391-6402.
[32]
Keren-Kaplan T, Attali I, Estrin M, et al. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding[J]. EMBO J, 2013, 32(4):538-551.
[33]
Immekus F, Barandun LJ, Betz M, et al. Launching spiking ligands into a prote-i-n-proteininterface:a promising strategy to destabilize and break interface formation in a tRN-A modify-in-g enzyme[J]. ACS Chem Biol, 2013, 8(6):1163-1178.
Van Den Bogaart G, Meyenberg K, Diederichsen U, et al. Phosphatidylinos-i--t-ol 4, 5-bisph-o-sphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold[J]. Journal of Bio-l--o-gical Chemistry, 2012, 287(20):16447-16453.