Warburg O. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6):519-530.
[2]
Koppenol WH, BoundsPL, DangCV. Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5):325-337.
[3]
Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes[J]. Genomics, 2004, 84:1014-1020.
[4]
Warburg O. On the origin of cancer cells[J]. Science, 1956, 123:309-314.
[5]
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive[J]. Nat Cell Biol, 2004, 6(11):1122-1128.
[6]
David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer[J]. Nature, 2010, 463:364-368.
[7]
Chen M, David CJ, Manley JL. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins[J]. Nat Struct Mol Biol, 2012, 19:346-335.
[8]
Hitosugi T, Kang S, Vander Heiden MG, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth[J]. Sci Signal, 2009, 2(97):73-75.
[9]
Bluemlein K, Grüning NM, Feichtinger RG, et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesi[J]. Oncotarget, 2011, 2:393-400.
[10]
Keller KE, Tan IS, LeeYS. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions[J]. Science, 2012, 338(6110):1069-1072.
[11]
Sun Y, Connors KE, Yang DQ. AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner[J]. Mol Cell Biochem, 2007, 306(12):239-245.
[12]
Yoo YG, Hayashi M, Christensen J, Huang LE. An essential role of the HIF-1alpha-c-Myc axis in malignant progression[J]. Ann N Y Acad Sci, 2009, 1177:198-204.
[13]
Steták A, Veress R, Ovádi J, et al. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death[J]. Cancer Res, 2007, 67(4):1602-1608.
[14]
Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth[J]. Mol Cell, 2011, 42(6):719-730.
[15]
Weibo L, Gregg LS. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells[J]. Oncotarget, 2011, 2(7):551-556.
[16]
Gao X, Wang H, Yang JJ, et al. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J]. Mol Cell, 2012, 45(5):598-609.
[17]
Carroll RC, Ash JF, Vogt PK, Singer SJ. Reversion of transformed glycolysis to normal by inhibition of protein synthesis in rat kidney cells infected with temperature-sensitive mutant of Rous sarcoma virus[J]. Proc Natl Acad Sci USA, 1978, 75:5015-5019.
[18]
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29:625-634.
[19]
Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107:43-54.
[20]
Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J]. Nature, 2011, 480(7375):118-122.
[21]
Semenza GL. HIF-1:upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56.
[22]
Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma[J]. J. Bioenerg Biomembr, 2007, 39:231-234.
[23]
Spoden GA, Mazurek S, Morandell D, et al . Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation[J]. Int J Cancer, 2008, 123:312-321.
[24]
Gupta V, Bamezai RN. Human pyruvate kinase M2:a multifuncti-onal protein[J]. Protein Sci, 2010, 19(11):2031-2044.
[25]
Baek SH. When signaling kinases meet histones and histone modifiers in the nucleus[J]. Mol Cell, 2011, 42:274-284.
[26]
Mu?oz-Pinedo C, El Mjiyad N, Ricci JE. Cancer metabolism:current perspectives and future dire-ctions[J]. Cell Death Dis, 2012, 3:e248.
[27]
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11:85-95.
[28]
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29:625-634.
[29]
Clower CV, Chatterjee D, Wang Z, et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism[J]. Proc Natl Acad Sci USA, 2010, 107:1894-1899.
[30]
Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145(5):732-744.
[31]
Chaneton B, Gottlieb E. Rocking cell metabolism:revised functions of the key glycolytic regulator PKM2 in cancer[J]. Trends Biochem Sci, 2012, 37(8):309-316.
[32]
Anastasiou D, Poulogiannis G, Asara JM, et al. , Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J]. Science, 2011, 334(6060):1278-1283.
[33]
Chaneton B, Hillmann P, Zheng L, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2[J]. Nature, 2012, 491(7424):458-462.
[34]
Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology[J]. Semin Cell Dev Biol, 2012, 23(4):352-361.
[35]
Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metabolism, 2013, 17(1):113-124.
[36]
Lu Z. Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis[J]. Chin J Cancer, 2012, 31(1):5-7.
[37]
Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis[J]. Biochemistry, 2005, 44:9417-9429.
[38]
Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J]. Science, 2011, 334(6060):1278-1283.
[39]
Lee J, Kim HK, Han YM, Kim J, et al. Pyruvate kinase isozyme type M2 . PKM2)interacts and cooperates with Oct-4 in regulating transcription[J]. Int J Biochem Cell Biol, 2008, 40(5):1043-1054.
[40]
Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancer by oncogenes and tumor suppressor genes[J]. Science, 2010, 330:1340-1344.
[41]
Lunt SY, Vander Heiden MG. Aerobic glycolysis:meeting the metabolic requireements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27:441-464.
[42]
Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate:a metabolic key player in cancer[J]. Cancer Res, 2011, 71:6921-6925.
[43]
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12:5447-5454.
[44]
Yang W, Zheng Y, Xia Y, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect[J]. Nat Cell Biol, 2012, 14(12):1295-1304.
[45]
Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis[J]. Cell, 2012, 150(4):685-696.
[46]
Tamada M, Suematsu M, Saya H. Pyruvate kinase M2:multiple faces for conferring benefits on cancer cells[J]. Clin Cancer Res, 2012, 18(20):5554-5561.
[47]
Chen J, Xie J, Jiang Z, et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2[J]. Oncogene, 2011, 30:4297-4306.
[48]
Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J]. Nature, 2008, 452:230-233.