全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线粒体自噬调控机制研究进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.06.005, PP. 42-47

Keywords: 线粒体自噬,酵母,哺乳动物,植物

Full-Text   Cite this paper   Add to My Lib

Abstract:

线粒体为细胞正常生命运动提供能量和物质;然而各种因素会导致线粒体损伤,衰老及功能紊乱,它们是细胞潜在的危险因素,必需及时清除,线粒体自噬可以起到这一作用,维持细胞稳态。当细胞处于恶劣环境时,线粒体自噬可通过降解线粒体补充生命必需物质,从而度过危机维持生存。另外线粒体自噬会在某些情况下通过降解正常线粒体来维持线粒体质量和数量的平衡。不同生物中具有不同的线粒体自噬途径和机制,酵母中主要通过Atg32磷酸化调控线粒体自噬;哺乳动物中则存在分别由Parkin-PINK1、Nix、FUNDC1等不同蛋白介导的线粒体自噬调控机制;植物线粒体自噬的研究主要集中在拟南芥,其途径及具体调控机制尚不明确。综述了近年来酵母、动物和植物中线粒体自噬的作用机制及调控因子等方面的研究进展。

References

[1]  Nakatogawa H, Kamada Y, Kamada Y. Dynamics and diversity in autophagy mechanisms:lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10(7):458-467.
[2]  Kim I, Rodriguez-Enriquez S, LemastersJJ. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462:245-253.
[3]  Twig G, Elorza A, Molina A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. EMBO Journal, 2008, 27(2):433-446.
[4]  Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1):31-42.
[5]  Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Dev Cell, 2009, 17(1):87-97.
[6]  Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Dev Cell, 2009, 17(1):98-109.
[7]  Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homolo-gue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19:5720-5728.
[8]  Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075.
[9]  Pankiv S, Clausen T, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33):24131-24145.
[10]  Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death and Differentiation, 2013, 20(1):31-42.
[11]  Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy[J]. Mol Biol Cell, 2011, 22(17):3206-3217.
[12]  Youle RJ, Narendra DP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1):9-14.
[13]  Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance[J]. J Cell Sci, 2012, 125(Pt 4):795-799.
[14]  Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3 during mitophagy[J]. J Biol Chem, 2009, 284:35885-35895.
[15]  Sha D, Chin LS, Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling[J]. Hum Mol Genet, 2010, 19(2):352-363.
[16]  Van Humbeeck C, Cornelissen T, Vandenberghe W. Ambra1:a Parkin-binding protein involved in mitophagy[J]. Autophagy, 2011, 7(12):1555-1556.
[17]  Liu L, Feng D, Chen M, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2):177-185.
[18]  Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12:1542-1552.
[19]  Xiong Y, Contento A, Nguyen PQ, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J]. Plant Physiol, 2007, 143(1):291-299.
[20]  Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitoph-agy in Arabidopsis[J]. Plant Cell, 2014, 26:788-807.
[21]  Betin VM, Lane JD. Atg4D at the interface between autophagy and apoptosis[J]. Autophagy, 2009, 5(7):1057-1059.
[22]  Wang X, Leung AW, Luo J, Xu C. TEM observation of ultrasound-induced mitophagy in nasopharyngeal carcinoma cells in the presence of curcumin[J]. Exp Ther Med, 2012, 3:146-148.
[23]  Yang Z, Klionsky DJ. Eaten alive:a history of macroautophagy[J]. Nat Cell Biol, 2010, 12(9):814-822.
[24]  MinibayevaF, Dmitrieva S, Ponomareva A. Oxidative stress-induced autophagy in plants:the role of mitochondria[J]. Plant Physiology and Biochemistry, 2012, 59:11-19.
[25]  Bhatia-Kissova I, Camougrand N. Mitophagy:a process that adapts to the cell physiology[J]. Int J Biochem Cell Biol, 2013, 45:30-33.
[26]  Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana[J]. PLoS One, 2010. 5(7):e11883.
[27]  Kondo-Okamoto N, Noda NN, Suzuki SW, et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy[J]. J Biol Chem, 2012, 287(13):10631-10638.
[28]  Kanki T, Klionsky DJ, Okamoto K. Mitochondria autophagy in yeast[J]. Antioxid Redox Signal, 2011, 14(10):1989-2001.
[29]  Hirota Y, Kang D, Kanki T. The physiological role of mitophagy:new insights into phosphorylation events[J]. Int J Cell Biol, 2012, 2012:354914.
[30]  Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408:488-492.
[31]  Kanki T, Wang K, Baba M, et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy[J]. Mol Biol Cell, 2009, 20(22):4730-4738.
[32]  Noda NN, Kumeta H, Nakatogawa H, et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy[J]. Genes Cells, 2008, 13(12):1211-1218.
[33]  Ichimura Y, Kumanomidou T, Sou Y, et al. Structural basis for sorting mechanism of p62 in selective autophagy[J]. J Biol Chem, 2008, 283(33):22847-22857.
[34]  Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway[J]. Mol Biol Cell, 2005, 16(4):1593-1605.
[35]  Springer W, Kahle PJ. Regulation of PINK1-Parkin-mediated mitophagy[J]. Autophagy, 2011, 7(3):266-278.
[36]  Vazquez-Martin A, Cufi S, Corominas-Faja B, et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency:new insight into the role of mitophagy in cell stemness[J]. Aging, 2012, 4(6):393-401.
[37]  Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy[J]. Hum Mol Genet, 2010, 19(24):4861-4870.
[38]  Kim Y, Park J, Kim S, et al. PINK1 controls mitochondrial localiza-tion of Parkin through direct phosphorylation[J]. Biochem Biophys Res Commun, 2008, 377(3):975-980.
[39]  Moriwaki Y, Kim YJ, Ido Y, et al. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteaso-me-dependent manner[J]. Neurosci Res, 2008, 61(1):43-48.
[40]  Huang C, Andres AM, Ratliff EP, et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1[J]. PLoS One, 2011, 6(6):20975-20975.
[41]  Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy[J]. J Neurosci, 2011, 31(28):10249-10261.
[42]  Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1):45-51.
[43]  Chen G, Cizeau J, Velde C, et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins[J]. J Biol Chem, 1999, 274(1):7-10.
[44]  Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201):232-235.
[45]  Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation[J]. Proc Natl Acad Sci USA, 2007, 104(49):19500-19505.
[46]  Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009, 16(7):939-946.
[47]  Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death Differ, 2009, 16(1):87-93.
[48]  Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution:emerging role(s)for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment[J]. Cancer Biol Ther, 2010, 10(6):537-542.
[49]  Woo J, Park E, andDinesh-Kumar SP. Differential processing of Ar-abidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases[J]. Proc Natl Acad Sci USA, 2014, 111(2):863-868.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133