Nakatogawa H, Kamada Y, Kamada Y. Dynamics and diversity in autophagy mechanisms:lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10(7):458-467.
[2]
Kim I, Rodriguez-Enriquez S, LemastersJJ. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462:245-253.
[3]
Twig G, Elorza A, Molina A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. EMBO Journal, 2008, 27(2):433-446.
[4]
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1):31-42.
[5]
Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Dev Cell, 2009, 17(1):87-97.
[6]
Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Dev Cell, 2009, 17(1):98-109.
[7]
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homolo-gue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19:5720-5728.
[8]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075.
[9]
Pankiv S, Clausen T, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33):24131-24145.
[10]
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death and Differentiation, 2013, 20(1):31-42.
[11]
Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy[J]. Mol Biol Cell, 2011, 22(17):3206-3217.
Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance[J]. J Cell Sci, 2012, 125(Pt 4):795-799.
[14]
Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3 during mitophagy[J]. J Biol Chem, 2009, 284:35885-35895.
[15]
Sha D, Chin LS, Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling[J]. Hum Mol Genet, 2010, 19(2):352-363.
[16]
Van Humbeeck C, Cornelissen T, Vandenberghe W. Ambra1:a Parkin-binding protein involved in mitophagy[J]. Autophagy, 2011, 7(12):1555-1556.
[17]
Liu L, Feng D, Chen M, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2):177-185.
[18]
Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12:1542-1552.
[19]
Xiong Y, Contento A, Nguyen PQ, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J]. Plant Physiol, 2007, 143(1):291-299.
[20]
Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitoph-agy in Arabidopsis[J]. Plant Cell, 2014, 26:788-807.
[21]
Betin VM, Lane JD. Atg4D at the interface between autophagy and apoptosis[J]. Autophagy, 2009, 5(7):1057-1059.
[22]
Wang X, Leung AW, Luo J, Xu C. TEM observation of ultrasound-induced mitophagy in nasopharyngeal carcinoma cells in the presence of curcumin[J]. Exp Ther Med, 2012, 3:146-148.
[23]
Yang Z, Klionsky DJ. Eaten alive:a history of macroautophagy[J]. Nat Cell Biol, 2010, 12(9):814-822.
[24]
MinibayevaF, Dmitrieva S, Ponomareva A. Oxidative stress-induced autophagy in plants:the role of mitochondria[J]. Plant Physiology and Biochemistry, 2012, 59:11-19.
[25]
Bhatia-Kissova I, Camougrand N. Mitophagy:a process that adapts to the cell physiology[J]. Int J Biochem Cell Biol, 2013, 45:30-33.
[26]
Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana[J]. PLoS One, 2010. 5(7):e11883.
[27]
Kondo-Okamoto N, Noda NN, Suzuki SW, et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy[J]. J Biol Chem, 2012, 287(13):10631-10638.
[28]
Kanki T, Klionsky DJ, Okamoto K. Mitochondria autophagy in yeast[J]. Antioxid Redox Signal, 2011, 14(10):1989-2001.
[29]
Hirota Y, Kang D, Kanki T. The physiological role of mitophagy:new insights into phosphorylation events[J]. Int J Cell Biol, 2012, 2012:354914.
[30]
Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408:488-492.
[31]
Kanki T, Wang K, Baba M, et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy[J]. Mol Biol Cell, 2009, 20(22):4730-4738.
[32]
Noda NN, Kumeta H, Nakatogawa H, et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy[J]. Genes Cells, 2008, 13(12):1211-1218.
[33]
Ichimura Y, Kumanomidou T, Sou Y, et al. Structural basis for sorting mechanism of p62 in selective autophagy[J]. J Biol Chem, 2008, 283(33):22847-22857.
[34]
Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway[J]. Mol Biol Cell, 2005, 16(4):1593-1605.
Vazquez-Martin A, Cufi S, Corominas-Faja B, et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency:new insight into the role of mitophagy in cell stemness[J]. Aging, 2012, 4(6):393-401.
[37]
Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy[J]. Hum Mol Genet, 2010, 19(24):4861-4870.
[38]
Kim Y, Park J, Kim S, et al. PINK1 controls mitochondrial localiza-tion of Parkin through direct phosphorylation[J]. Biochem Biophys Res Commun, 2008, 377(3):975-980.
[39]
Moriwaki Y, Kim YJ, Ido Y, et al. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteaso-me-dependent manner[J]. Neurosci Res, 2008, 61(1):43-48.
[40]
Huang C, Andres AM, Ratliff EP, et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1[J]. PLoS One, 2011, 6(6):20975-20975.
[41]
Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy[J]. J Neurosci, 2011, 31(28):10249-10261.
[42]
Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1):45-51.
[43]
Chen G, Cizeau J, Velde C, et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins[J]. J Biol Chem, 1999, 274(1):7-10.
[44]
Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201):232-235.
[45]
Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation[J]. Proc Natl Acad Sci USA, 2007, 104(49):19500-19505.
[46]
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009, 16(7):939-946.
[47]
Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death Differ, 2009, 16(1):87-93.
[48]
Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution:emerging role(s)for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment[J]. Cancer Biol Ther, 2010, 10(6):537-542.
[49]
Woo J, Park E, andDinesh-Kumar SP. Differential processing of Ar-abidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases[J]. Proc Natl Acad Sci USA, 2014, 111(2):863-868.