全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型工业油料作物亚麻荠油脂代谢工程

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.06.006, PP. 28-36

Keywords: 亚麻荠,油脂,脂肪酸,生物燃油,代谢工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

亚麻荠(CamelinasativaL.Crantz)是一种新型的“低投入、环保型”工业油料作物。种子含油量达43%,其中α-亚麻酸>35%。种子油不仅可做食用油和动物饲料,亦可用于加工保健功能食品,以及生物燃油和高值油脂产品。重点分析亚麻荠主要农艺性状和优异油脂性状,论述应用基因工程技术对亚麻荠油脂品质的遗传改良研究,包括长链多聚不饱和脂肪酸,ω-7脂肪酸,中、短链脂肪酸和蜡酯生物合成,以及单一脂肪酸富集途径的代谢组装。分析和讨论了亚麻荠功能基因组学研究动向以及亚麻荠产业发展前景。

References

[1]  Singh R, Bollina V, Higgins EE, et al. Single-nucleotide polymorphi-sm identification and genotyping in Camelina sativa[J]. Molecular Breeding, 2015, 35:35.
[2]  Betancor MB, Sprague M, Usher S, et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish[J]. Scitific Reports, 2015, 5:8104.
[3]  Ruiz-Lopez N, Haslam RP, Usher S, et al. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds[J]. Plant Biotechnology Journal, 2015, 3. DOI:10. 1111/pbi. 12328.
[4]  Petrie JR, Shrestha P, Belide S, et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA[J]. PLoS One, 2014, 9(1):e85061.
[5]  Haslam RP. The modification of plant oil composition via metabolic engineering-better nutrition by design[J]. Plant Biotechnology Journal, 2013, 11:157-168.
[6]  Ghamkhar K, Croser J, Aryamanesh N, et al. Camelina(Camelina sativa(L. )Crantz)as an alternative oilseed:molecular and ecogeographic analyses[J]. Genome, 2010, 53(7):558-567.
[7]  钱伯章. Great Plains公司采用亚麻荠生产航空生物燃料[J]. 炼油技术与工程, 2010, 3:37.
[8]  Karvonen HM, Tapola NS, Uusitupa MI, et al. The effect of vegetable oil-based cheese on serum total and lipoprotein lipids[J]. European Journal of Clinical Nutrition, 2002, 56(11):1094-1101.
[9]  邓曙东, 张青文. 亚麻荠种植和利用的研究现状[J]. 植物学通报, 2004, 21(3):376-382.
[10]  Markéta S. Fatty acid composition of Camelina sativa as affected by combined nitrogen and sulphur fertilization[J]. African Journal of Agricultural Research, 2011, 6(16):3919-3923.
[11]  Ruiz-Lopez N, Haslam RP, Napier JA, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop[J]. The Plant Journal, 2014, 77(2):198-208.
[12]  Velasco L, Fernandez-Martinez JM. Breeding oilseed crops for improved oil quality[J]. Journal of Crop Production, 2002, 5:309-344.
[13]  Gugel RK, Falk KC. Agronomic and seed quality evaluation of Camelina sativa in western Canada[J]. Canadian Journal of Plant Science, 2006, 86(4):1047-1058.
[14]  杜润鸿. 油料家园的一枝奇葩——荠蓝[J]. 粮油加工与食品机械, 2005, 4:23-24.
[15]  Luczkiewicz T, Szewczyk D. Variability of some plant traits of Camelina sativa L. in g1-3 generation[J]. Rosliny Oleiste, 1997, 18(1):83-90.
[16]  Buchsenschutz NA, Schuster A, Friedt W. Breeding for modified fatty acid composition via experimental mutagenesis in Camelina sativa(L. )Crtz. [J]. Industrial Crops and Products, 1998, 7:291-295.
[17]  黄友志. 油料新作物亚麻荠的初步研究[D]. 北京:中国农业大学, 2002.
[18]  张永泰, 毛善婧, 李爱民, 等. 亚麻荠原生质体培养再生植株的研究[J]. 扬州大学学报:农业与生命科学版, 2006, 27(4):78-80.
[19]  Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation[J]. Plant Cell, 2008, 27:273-278.
[20]  岳爱琴, 孙希平, 李润植. 食用植物油脂的代谢工程[J]. 植物生理与分子生物学学报, 2007, 33(6):489-498.
[21]  Kang J, Snapp AR, Lu C. Identification of three genes encoding microsomal oleate desaturases(FAD2)from the oilseed crop Camelina sativa[J]. Plant Physiology and Biochemistry, 2011, 49(2):223-229.
[22]  Rodriguez-Rodriguez MF, Salas JJ, Garces R, et al. Acyl-ACP thioesterases from Camelina sativa:cloning, enzymatic characterization and implication in seed oil fatty acid composition[J]. Phytochemistry, 2014, 107:7-15.
[23]  Wu Y, Li R, Hildebrand DF. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry[J]. Progress in Lipid Research, 2012, 51(4):340-349.
[24]  薛金爱, 毛雪, 吴永美, 等. 酿酒酵母脂酰-△9脱氢酶亚细胞定位表达及其对烟草脂肪酸合成的影响[J]. 生物工程学报, 2013, 29(5):630-645.
[25]  Nguyen HT, Silva JE, Podicheti R, et al. Camelina seed transcriptome:a tool for meal and oil improvement and translational research[J]. Plant Biotechnology Journal, 2013, 11(6):759-769.
[26]  Lu C, Napier JA, Clemente TE, et al. New frontiers in oilseed biotechnology:meeting the growing global demand for vegetable oils for food, feed, biofuel, and industrial uses[J]. Current Opinion in Biotechnology, 2011, 22:252-259.
[27]  Collins-Silva JC, Cahoon EB. Camelina:A designer biotech oilseed crop[J]. Inform, 2011, 22:610-613.
[28]  Kagale S, Koh C, Nixon J, et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure[J]. Nature Communications, 2014, 23(5):3706.
[29]  Hutcheon C, Ditt RF, Beilstein M, et al. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes[J]. BMC Plant Biology, 2010, 10:233.
[30]  Li M, Wei F, Tawfall A, et al. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina[J]. Plant Biotechnology Journal, 2014. DOI:10. 1111/pbi. 12304.
[31]  Park W, Feng Y, Ahn SJ. Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa[J]. Biotechnology for Biofuels, 2014, 7:96.
[32]  Eynck C, Falk KC. Camelina(Camelina sativa)//Singh BP(ed)Biofuel Crops:Production, Physiology and Genetics[M]. Center for Agricuture and Bioscience International, 2013:369-391.
[33]  Séguin-Swartz G, Eynck C, Gugel R, et al. Diseases of Camelina sativa(false flax)[J]. Canadian Journal of Plant Pathology, 2009, 31:375-386.
[34]  Manca A, Pecchia P, Mapelli S, et al. Evaluation of genetic diversity in a Camelina sativa(L.)Crantz collection using microsatellite markers and biochemical traits[J]. Ggenetic Resources and Crop Evolution, 2013, 60(4):1223-1236.
[35]  刘广瑞, 颜蓓蓓, 陈冠益. 航空生物燃料制备技术综述及展望[J]. 生物质化学工程, 2012, 46(3):45-48.
[36]  邓乾春, 黄凤洪, 黄庆德, 等. 一种高利用价值油料作物-亚麻荠的研究进展[J]. 中国油料作物学报, 2009, 31(4):551-559.
[37]  Zubr J, Matthaus B. Effects of growth conditions on fatty acids and to copherols in Camelina sativa oil[J]. Industrial Crops and Products, 2002, 15:155-162.
[38]  Matthaus B, Zubr J. Variability of specific components in Camelina sativa oilseed cakes[J]. Industrial Crop sand Products, 2000, 12(1):9-18.
[39]  Shukla VKS, Dutta PC, Artz WE. Camelina oil and its unusual cholesterol content[J]. Journal of the American Oil Chemists’ Society, 2002, 79(10):965-969.
[40]  Tong W, Kevin BH, Robert M. Antioxidant activity of phytosterols, oryzanol and other phytosterol conjugates[J]. Journal of the American Oil Chemists’ Society, 2002, 79(12):1201-1206.
[41]  Vollmann J, Grausgruber H, Stift G, et al. Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism[J]. Plant Breeding, 2005, 124(5):446-453.
[42]  Vollmann J, Moritz T, Kargl C, et al. Agronomic evaluation of camelina genotypes selected for seed quality characteristics[J]. Industrial Crops and Products, 2007, 26(3):270-277.
[43]  Janick J, Paris HS, Parrish DC. The cucurbits of mediterranean antiquity:identification of taxa from ancient images and descriptions[J]. Annals of Botany, 2007, 100(7):1441-1457.
[44]  Gehringer A, Friedt W, Luhs W, et al. Genetic mapping of agronomic traits in false flax(Camelina sativa subsp. sativa)[J]. Genome, 2006, 49(12):1555-1563.
[45]  高立虎. 亚麻荠高效再生体系创建及KLU转化亚麻荠研究[D]. 石河子:石河子大学, 2013.
[46]  吴永美, 毛雪, 王书建, 等. 植物ω-7脂肪酸的系统代谢工程[J]. 植物学报, 2011, 46(5):575-585.
[47]  Malik MR, Yang W, Patterson N, et al. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds[J]. Plant Biotechnology Journal, 2014, DOI:10. 1111/pbi. 12290.
[48]  Cahoon EB, Shockey JM, Dietrich CR, et al. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks:solving bottlenecks in fakty acid flux[J]. Current Opinion in Plant Biology, 2007, 10(3):236-244.
[49]  Xue ZX, Sharpe PL, Hong SP, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nature Biotechnology, 2013, 31;734-740.
[50]  Xue JA, Mao X, Yang ZR, et al. Expression of yeast acyl-CoA-9 desaturase leads to accumulation of unusual monounsaturated fatty acids in soybean seeds[J]. Biotechnology Letters, 2013, 35(6):951-959.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133