Singh R, Bollina V, Higgins EE, et al. Single-nucleotide polymorphi-sm identification and genotyping in Camelina sativa[J]. Molecular Breeding, 2015, 35:35.
[2]
Betancor MB, Sprague M, Usher S, et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish[J]. Scitific Reports, 2015, 5:8104.
[3]
Ruiz-Lopez N, Haslam RP, Usher S, et al. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds[J]. Plant Biotechnology Journal, 2015, 3. DOI:10. 1111/pbi. 12328.
[4]
Petrie JR, Shrestha P, Belide S, et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA[J]. PLoS One, 2014, 9(1):e85061.
[5]
Haslam RP. The modification of plant oil composition via metabolic engineering-better nutrition by design[J]. Plant Biotechnology Journal, 2013, 11:157-168.
[6]
Ghamkhar K, Croser J, Aryamanesh N, et al. Camelina(Camelina sativa(L. )Crantz)as an alternative oilseed:molecular and ecogeographic analyses[J]. Genome, 2010, 53(7):558-567.
[7]
钱伯章. Great Plains公司采用亚麻荠生产航空生物燃料[J]. 炼油技术与工程, 2010, 3:37.
[8]
Karvonen HM, Tapola NS, Uusitupa MI, et al. The effect of vegetable oil-based cheese on serum total and lipoprotein lipids[J]. European Journal of Clinical Nutrition, 2002, 56(11):1094-1101.
Markéta S. Fatty acid composition of Camelina sativa as affected by combined nitrogen and sulphur fertilization[J]. African Journal of Agricultural Research, 2011, 6(16):3919-3923.
[11]
Ruiz-Lopez N, Haslam RP, Napier JA, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop[J]. The Plant Journal, 2014, 77(2):198-208.
[12]
Velasco L, Fernandez-Martinez JM. Breeding oilseed crops for improved oil quality[J]. Journal of Crop Production, 2002, 5:309-344.
[13]
Gugel RK, Falk KC. Agronomic and seed quality evaluation of Camelina sativa in western Canada[J]. Canadian Journal of Plant Science, 2006, 86(4):1047-1058.
[14]
杜润鸿. 油料家园的一枝奇葩——荠蓝[J]. 粮油加工与食品机械, 2005, 4:23-24.
[15]
Luczkiewicz T, Szewczyk D. Variability of some plant traits of Camelina sativa L. in g1-3 generation[J]. Rosliny Oleiste, 1997, 18(1):83-90.
[16]
Buchsenschutz NA, Schuster A, Friedt W. Breeding for modified fatty acid composition via experimental mutagenesis in Camelina sativa(L. )Crtz. [J]. Industrial Crops and Products, 1998, 7:291-295.
Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation[J]. Plant Cell, 2008, 27:273-278.
Kang J, Snapp AR, Lu C. Identification of three genes encoding microsomal oleate desaturases(FAD2)from the oilseed crop Camelina sativa[J]. Plant Physiology and Biochemistry, 2011, 49(2):223-229.
[22]
Rodriguez-Rodriguez MF, Salas JJ, Garces R, et al. Acyl-ACP thioesterases from Camelina sativa:cloning, enzymatic characterization and implication in seed oil fatty acid composition[J]. Phytochemistry, 2014, 107:7-15.
[23]
Wu Y, Li R, Hildebrand DF. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry[J]. Progress in Lipid Research, 2012, 51(4):340-349.
Nguyen HT, Silva JE, Podicheti R, et al. Camelina seed transcriptome:a tool for meal and oil improvement and translational research[J]. Plant Biotechnology Journal, 2013, 11(6):759-769.
[26]
Lu C, Napier JA, Clemente TE, et al. New frontiers in oilseed biotechnology:meeting the growing global demand for vegetable oils for food, feed, biofuel, and industrial uses[J]. Current Opinion in Biotechnology, 2011, 22:252-259.
Kagale S, Koh C, Nixon J, et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure[J]. Nature Communications, 2014, 23(5):3706.
[29]
Hutcheon C, Ditt RF, Beilstein M, et al. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes[J]. BMC Plant Biology, 2010, 10:233.
[30]
Li M, Wei F, Tawfall A, et al. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina[J]. Plant Biotechnology Journal, 2014. DOI:10. 1111/pbi. 12304.
[31]
Park W, Feng Y, Ahn SJ. Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa[J]. Biotechnology for Biofuels, 2014, 7:96.
[32]
Eynck C, Falk KC. Camelina(Camelina sativa)//Singh BP(ed)Biofuel Crops:Production, Physiology and Genetics[M]. Center for Agricuture and Bioscience International, 2013:369-391.
[33]
Séguin-Swartz G, Eynck C, Gugel R, et al. Diseases of Camelina sativa(false flax)[J]. Canadian Journal of Plant Pathology, 2009, 31:375-386.
[34]
Manca A, Pecchia P, Mapelli S, et al. Evaluation of genetic diversity in a Camelina sativa(L.)Crantz collection using microsatellite markers and biochemical traits[J]. Ggenetic Resources and Crop Evolution, 2013, 60(4):1223-1236.
Zubr J, Matthaus B. Effects of growth conditions on fatty acids and to copherols in Camelina sativa oil[J]. Industrial Crops and Products, 2002, 15:155-162.
[38]
Matthaus B, Zubr J. Variability of specific components in Camelina sativa oilseed cakes[J]. Industrial Crop sand Products, 2000, 12(1):9-18.
[39]
Shukla VKS, Dutta PC, Artz WE. Camelina oil and its unusual cholesterol content[J]. Journal of the American Oil Chemists’ Society, 2002, 79(10):965-969.
[40]
Tong W, Kevin BH, Robert M. Antioxidant activity of phytosterols, oryzanol and other phytosterol conjugates[J]. Journal of the American Oil Chemists’ Society, 2002, 79(12):1201-1206.
[41]
Vollmann J, Grausgruber H, Stift G, et al. Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism[J]. Plant Breeding, 2005, 124(5):446-453.
[42]
Vollmann J, Moritz T, Kargl C, et al. Agronomic evaluation of camelina genotypes selected for seed quality characteristics[J]. Industrial Crops and Products, 2007, 26(3):270-277.
[43]
Janick J, Paris HS, Parrish DC. The cucurbits of mediterranean antiquity:identification of taxa from ancient images and descriptions[J]. Annals of Botany, 2007, 100(7):1441-1457.
[44]
Gehringer A, Friedt W, Luhs W, et al. Genetic mapping of agronomic traits in false flax(Camelina sativa subsp. sativa)[J]. Genome, 2006, 49(12):1555-1563.
Malik MR, Yang W, Patterson N, et al. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds[J]. Plant Biotechnology Journal, 2014, DOI:10. 1111/pbi. 12290.
[48]
Cahoon EB, Shockey JM, Dietrich CR, et al. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks:solving bottlenecks in fakty acid flux[J]. Current Opinion in Plant Biology, 2007, 10(3):236-244.
[49]
Xue ZX, Sharpe PL, Hong SP, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nature Biotechnology, 2013, 31;734-740.
[50]
Xue JA, Mao X, Yang ZR, et al. Expression of yeast acyl-CoA-9 desaturase leads to accumulation of unusual monounsaturated fatty acids in soybean seeds[J]. Biotechnology Letters, 2013, 35(6):951-959.