全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木质素降解酶及相关基因研究进展

, PP. 62-72

Keywords: 木质素,生物降解,过氧化物酶,漆酶,基因组学

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物质的高效综合利用已成为全球关注的热点问题。生物质的主要成分是木质素、纤维素和半纤维素,其利用的关键是如何去除木质素,从而提高纤维素和半纤维素的得率。其中利用真菌的生物预处理方法因条件温和、无二次污染等优点符合全球经济可持续发展需要,受到研究者的普遍关注。综述了近年国内外真菌分泌的主要木质素降解酶,包括木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、漆酶(laccase)和多功能过氧化物酶(VP)的主要特点,总结了木质素降解相关酶的基因工程、基因组学的研究成果,并对其发展前景进行了展望。

References

[1]  Fernández-Fueyo E, Ruiz-Due?as FJ, Miki Y, et al. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora[J]. The Journal of Biological Chemistry, 2012, 287(20):16903-16916.
[2]  Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18.
[3]  Strong PJ, Claus H. Laccase:a review of its past and its future in bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(4):373-434.
[4]  Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes[J]. Journal of Biotechnology, 2009, 144(1):37-42.
[5]  Miki Y, Ichinose H, Wariishi H. Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina:a novel fungal peroxidase[J]. FEMS Microbiology Letters, 2010, 304(1):39-46.
[6]  Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
[7]  Singh D, Chen SL. The white-rot fungus Phanerochaete chrysospor-ium:conditions for the production of lignin-degrading enzymes[J]. Applied Microbiology and Biotechnology, 2008, 81(3):399-417.
[8]  Lundell TK, M?kel? MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review[J]. Journal of Basic Microbiology, 2010, 50(1):5-20.
[9]  Yang JS, Ni JR, Yuan HL, et al. Biodegradation of three different wood chips by Pseudomonas sp. PKE117[J]. International Biodeterioration and Biodegradation, 2007, 60(2):90-95.
[10]  Heinfling A, Ruiz-Due?as FJ, Martínez MJ, et al. A study on reducing substrates of manganese oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta[J]. FEBS Letters, 1998, 428(3):141-146.
[11]  Cheng XB, Jia R, Li PS, et al. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17 and decolorization of azo dyes by the enzyme[J]. Enzyme and Microbial Technology, 2007, 41(3):258-264.
[12]  Patel DS, Aithal RK, Krishna G, et al. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media[J]. Colloids and Surfaces B:Biointerfaces, 2005, 43(1):13-19.
[13]  Nascimento HJ, Silva JG. Purification of lignin peroxidase isoforms from Streptomyces viridosporus T7A by hydrophobic based chromatographies[J]. World Journal of Microbiology and Biotechnology, 2008, 24(9):1973-1975.
[14]  Morgenstern I, Klopman S, Hibbett DS. Molecular Evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes[J]. Journal of Molecular Evolution, 2008, 66(3):243-257.
[15]  Bonugli-Santos RC, Durrant LR, Silva MD, et al. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi[J]. Enzyme and Microbial Technology, 2010, 46(1):32-37.
[16]  Raghukumar C, D’souza TM, Thorn RG, et al. Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment[J]. Applied Microbiology and Biotechnology, 1999, 65(5):2103-2111.
[17]  Hofrichter M, Vares T, Kalsi M, et al. Production of ligninolytic enzymes and organic acids, and mineralization of 14C-labeled lignin during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii[J]. Applied and Environmental Microbiology, 1999, 65(5):1864-1870.
[18]  Martinez D, Larrondo LF, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6):695-700.
[19]  Hirai H, Sugiura M, Kawai S, et al. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2005, 246(1):19-24.
[20]  Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiate during solid-state fermentation of wheat straw[J]. Applied and Environmental Microbiology, 1995, 61(10):3515-3520.
[21]  Urzúa U, Larrondo LF, Lobos S, et al. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora[J]. FEBS Letters, 1995, 371(2):132-136.
[22]  Tsukihara T, Honda Y, Sakai R, et al. Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2[J]. Applied and Environmental Mocrobiology, 2008, 74(9):2873-2881.
[23]  Sundaramoorthy M, Youngs HL, Gold MH, et al. High-resolution crystal structure of manganese peroxidase:substrate and inhibitor complexes[J]. Biochemistry, 2005, 44(17):6463-6470.
[24]  Iqbal HM, Asgher M. Characterization and decolorization applica-bility of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04[J]. Protein and Peptide Letters, 2013, 20(5):591-600.
[25]  Lankinen VP, Bonnen AM, Anton LH, et al. Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus[J]. Applied Microbiology and Biotechnology, 2001, 55(2):170-176.
[26]  Koroleva OV, Gavrilova VP, Stepanova EV, et al. Production of lignin modifying enzymes by co-cultivated White-Rot Fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima[J]. Enzyme and Microbial Technology, 2002, 30(4):573-580.
[27]  Salas C, Lobos S, Larrain J, et al. Properties of laccase isoenzymes produced by the basidiomycetes Ceriporiopsis subvermispora[J]. Biotechnology and Applied Biochemistry, 1995, 21(3):323-333.
[28]  Lisova ZA, Lisov AV, Leontievsky AA. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196:Induction, isolation and properties[J]. Journal of Basic Microbiology, 2010, 50(1):72-82.
[29]  Schneider P, Caspersen MB, Mondorf K, et al. Characterization of a Coprinus cinereus laccase[J]. Enzyme and Microbial Technology, 1999, 25(6):502-508.
[30]  Saparrat MCN, Guillén F, Arambarri AM, et al. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida[J]. Applied Microbiology and Biotechnology, 2002, 68(4):1534-1540.
[31]  Do Rosário Freixo M, Karmali A, Arteiro JM. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(6):475-484.
[32]  Zhang GQ, Wang YF, Zhang XQ, et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima[J]. Process Biochemistry, 2010, 45(5):627-633.
[33]  Perie FH, Reddy GVB, Blackburn NJ, et al. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens[J]. Archives of Biochemistry and Biophysics, 1998, 353(2):349-355.
[34]  Wu YR, Luo ZH, Chow RKK, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2[J]. Bioresource Technology, 2010, 101(24):9772-9777.
[35]  D’Souza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 1999, 65(12):5307-5313.
[36]  Nagai M, Sato T, Watanabe H, et al. Purification and characteriza-tion of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes[J]. App-lied Microbiology and Biotechnology, 2002, 60(3):327-335.
[37]  Iyer G, Chattoo BB. Purification and characterization of laccase from the rice blast fungus Magnaporthe grisea[J]. FEMS Microbiology Letters, 2003, 227(1):121-126.
[38]  Schückel J, Matura A, van Pée KH. One-copper laccase-related enzyme from Marasmius sp.:purification, characterization and bleaching of textile dyes[J]. Enzyme and Microbial Technology, 2011, 48(3):278-284.
[39]  Farnet AM, Criquet S, Pocachard E, et al. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter(Quercus suber L. )[J]. Mycologia, 2002, 94(5):735-740.
[40]  Qiu WH, Chen HZ. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin[J]. Bioresource Technology, 2008, 99(13):5480-5484.
[41]  Vite-Vallejo O, Palomares LA, Dantán-González E, et al. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sangu-ineus laccase[J]. Enzyme and Microbial Technology, 2009, 45(3):233-239.
[42]  Di Nardo C, Cinquegrana A, Papa S, et al. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry, 2004, 36(10):1539-1544.
[43]  Cambria MT, Cambria A, Ragusa S, et al. Production, purification and properties of an extracellular laccase from Rigidoporus lignosus[J]. Protein Expression and Purification, 2000, 18(2):141-147.
[44]  Shleev SV, Morozova O, Nikitina O, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes[J]. Biochimie, 2004, 86(9-10):693-703.
[45]  Galhaup C, Goller S, Peterbauer CK, et al. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions[J]. Microbiology, 2002, 148(7):2159-2169.
[46]  Jung H, Xu F, Li KC. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme and Microbial Technology, 2002, 30(2):161-168.
[47]  Sadhasivam S, Savitha S, Swaminathan K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1[J]. Process Biochemistry, 2008, 43(7):736-742.
[48]  Liers C, Ullrich R, Pecyna M, et al. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha[J]. Enzyme and Microbial Technology, 2007, 41(6):785-793.
[49]  Ruiz-Due?as FJ, Morales M, García E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2009, 60(2):441-52.
[50]  陈敏, 姚善泾, 张虹, 等. 食用菌杏鲍菇中一个多功能氧化酶纯化和特性研究[J]. 中国化学工程, 2010, 18(5):824-829.
[51]  Busse N, Wagner D, Kraume M, et al. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds[J]. American Journal of Biochemistry and Biotechnology, 2013, 9(4):365-394.
[52]  Bernini C, Pogni R, Basosi R, et al. Prediction of hydrogen-bonding networks around tyrosyl radical in P. eryngii versatile peroxidase W164Y variants:a QM/MM MD study[J]. Molecular Simulation, 2013, DOI:10. 1080/08927022. 2013. 822967.
[53]  Menon V, Rao M. Trends in bioconversion of lignocellulose:Biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4):522-550.
[54]  Steffen KT, Hofrichter M, Hatakka A. Purification and characteriza-tion of manganese peroxidases from the litter decomposing basidio-mycetes Agrocybe praecox and Stropharia coronilla[J]. Enzyme and Microbial Technology, 2002, 30(4):550-555.
[55]  Ziegenhagen D, Hofrichter M. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii[J]. Applied Microbiology and Biotechnology, 2000, 53(5):553-557.
[56]  Sklenara J, Niku-Paavola ML, Santos S, et al. Isolation and characterization of novel pI 4. 8 MnP isoenzyme from white-rot fungus Irpex lacteus[J]. Enzyme and Microbial Technology, 2010, 46(7):550-556.
[57]  Boer CG, Obici L, de Souza CGM, et al. Purification and some properties of Mn peroxidase from Lentinula edodes[J]. Process Biochemistry, 2006, 41(5):1203-1207.
[58]  Petruccioli M, Frasconi M, Quaratino D, et al. Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus CBS 577. 79[J]. Journal of Biological Inorganic Chemistry, 2009, 14(8):1153-1163.
[59]  Rubia T, De la Linares A, Pérez J, et al. Characterization of manga-nese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba[J]. Research in Microbiology, 2002, 153(8):547-554.
[60]  Hakala TK, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips[J]. Enzyme and Microbial Technology, 2005, 36(4):461-468.
[61]  Martínez MJ, Ruiz-Due?as GF, Martínez AT. Purification and catalytic properties of two manganese isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1996, 237(2):424-432.
[62]  Giardina P, Palmieri G, Fontanella B, et al. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust[J]. Archives Biochemistry and Biophysics, 2000, 376(1):171-179.
[63]  Schlosser D, H?fer C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase[J]. Applied Microbiology and Biotechnology, 2002, 68(7):3514-3521.
[64]  Bermek H, Yaz?c? H, ?ztürk H, et al. Purification and characterization of manganese peroxidase from wood-degrading fungus Trichophyton rubrum LSK-27[J]. Enzyme and Microbial Technology, 2004, 35(1):87-92.
[65]  Liew CY, Husaini A, Hussain H. Lignin biodegradation and ligninolytic enzyme studiesduring biopulping of Acacia mangium wood chips by tropical white rot fungi[J]. World Journal of Microbiol Biotechnol, 2011, 27(10):1457-1468.
[66]  Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242.
[67]  Camarero S, Ibarra D, Martínez MJ, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Applied and Environmental Microbiology, 2005, 71(4):1775-1784.
[68]  Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces[J]. Applied Microbiology and Biotechnology, 2002, 59(2-3):198-204.
[69]  Souza CGM, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmona-rius on wheat bran solid state medium[J]. Journal of Basic Micr-obiology, 2003, 43(4):278-286.
[70]  Aslam MS, Aishy A, Samra ZQ, et al. Identification, purification and characterization of a novel extracellular laccase from Cladosporium Cladosporioides[J]. Biotechnology & Biotechnological Equipment, 2012, 26(6):3344-3350.
[71]  Quaratino D, Federici F, Petruccioli M, et al. Production, purifica-tion and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577. 79[J]. Antonie van Leeu-wenhoek, 2007, 91(1):57-69.
[72]  Sathishkumar P, Murugesan K, Palvannan T. Production of laccase from Pleurotus florida using agro-wastes and efficient decolorization of Reactive blue 198[J]. Journal of Basic Microbiology, 2010, 50(4):360-367.
[73]  Mansur M, Arias ME, Copa-Pati?o JL, et al. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substr-ate specificities[J]. Mycologia, 2003, 95(6):1013-1020.
[74]  Kalme S, Jadhav S, Jadhav M, et al. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112[J]. Enzyme and Microbial Technology, 2009, 44(2):65-71.
[75]  Jaouaní A, Guillén F, Penninckx MJ, et al. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater[J]. Enzyme and Microbial Technology, 2005, 36(4):478-486.
[76]  Chakroun H, Mechichi T, Martinez MJ, et al. Purification and cha-racterization of a novel laccase from the ascomycete Trichoderma atroviride:Application on bioremediation of phenolic compounds[J]. Process Biochemistry, 2010, 45(4):507-513.
[77]  Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Applied Microbiology and Biotechnology, 2001, 55(5):566-570.
[78]  Johnson TM, Pease EA, Li JK, et al. Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus[J]. Archives Biocheistry and Biophysics, 1992, 296(2):660-666.
[79]  Nie GJ, Reading NS, Aust SD. Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 1998, 249(1):146-150.
[80]  Stewart P, Whitwam RE, Kersten PJ, et al. Efficient expression of Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae[J]. Applied and Environmental Microbiology, 1996, 62(3):860-864.
[81]  Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7):3016-3023.
[82]  Larrondo LF, Lobos S, Stewart P, et al. Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2001, 67(5):2070-2075.
[83]  Wang HK, Lu FP, Sun YF, et al. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica[J]. Biotechnology Letters, 2004, 26(20):1569-1573.
[84]  Mohor?i? M, Ben?ina M, Friedrich J, et al. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):851-858.
[85]  Janusz G, Kucharzyk KH, Pawlik A, et al. Fungal laccase, manganese peroxidase and lignin peroxidase:gene expression and regulation[J]. Enzyme and Microbial Technology, 2013, 52(1):1-12.
[86]  Minami M, Kureha O, Mori M, et al. Long serial analysis of gene expression for transcriptome profiling during the initiation or lignolytic enzymes production in Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2007, 75(3):609-618.
[87]  Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction:current genome-walking techniques for future metagenome applications[J]. Journal of Biotechnology, 2009, 144(2):75-82.
[88]  Xu MX, Xiao X, Wang FP. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment[J]. Extremophiles, 2008, 12(2):255-262.
[89]  Fernández-Fueyo E, Ruiz-Due?as FJ, Ferreira P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis[J]. Proceedings of the National Academy of Sciences, 2012, 109(14):5458-5463.
[90]  Ran YH, Che FZ, Chen WQ. Co-Immobilized lignin peroxidase and manganese peroxidase from coriolus versicolor capable of decolorizing molasses waste water[J]. Applied Mechanics and Materials, 2012, 138-139:1067-1071.
[91]  Wang HL, Yu GL, Li P, et al. Overproduction of Trametes versicolor laccase by making glucose starvation using yeast[J]. Enzyme and Microbial Technology, 2009, 45(2):146-149.
[92]  Yu GJ, Wang M, Huang J, et al. Deep insight into the ganoderma lucidumby comprehensive analysis of its transcriptome[J]. PLoS ONE, 2012, 7(8):44031-44040.
[93]  Salvachúa D, Martínez AT, Tien M, et al.Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment[J].Biotechnology for Biofuels, 2013, 6:115-129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133