Jaso-Friedmann L, Ruiz J, Bishop GR, et al. Regulation of innate immunity in tilapia:activation of nonspecific cytotoxic cells by cytokine-like factors[J]. Dev Comp Immunol, 2000, 24(1):25-36.
[3]
Praveen K, Evans DL, Jaso-Friedmann L. Constitutive expression of tumor necrosis factor-alpha in cytotoxic cells of teleosts and its role in regulation of cell-mediated cytotoxicity[J]. Mol Immunol, 2006, 43(3):279-291.
[4]
Ishimoto Y, Savan R, Endo M, et al. Non-specific cytotoxic cell rece-ptor(NCCRP)-1 type gene in tilapia(Oreochromis niloticus):its cloning and analysis[J]. Fish Shellfish Immunol, 2004, 16(2):163-172.
Rajanbabu V, Chen JY. Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus(IPNV)in Chinook salmon embryo(CHSE)-214 cells[J]. Fish Shellfish Immunol, 2011, 30(1):39-44.
[7]
Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages[J]. Peptides, 2011, 32(2):333-341.
[8]
Pan CY, Lee SC, Rajanbabu V, et al. Insights into the antibacterial and immunomodulatory functions of tilapia hepcidin(TH)2-3 against Vibrio vulnificus infection in mice[J]. Dev Comp Immunol, 2012, 36(1):166-173.
Acosta J, Montero V, Carpio Y, et al. Cloning and functional characterization of three novel antimicrobial peptides from tilapia(Oreochromis niloticus)[J]. Aquaculture, 2013, 372-375(24):9-18.
[11]
Lee DS, Hong SH, Lee HJ, et al. Molecular cDNA cloning and analysis of the organization and expression of the IL-1β gene in the Nile tilapia, Oreochromis niloticus[J]. Comp Biochem Physiol A:Mol Integr Physiol, 2006, 143(3):307-314.
[12]
Rengmark AH, Lingaas F. Genomic structure of the Nile tilapia(Oreochromis niloticus)transferrin gene and a haplotype associated with saltwater tolerance[J]. Aquaculture, 2007, 272(1):146-155.
[13]
Argayosa AM, Lee YC. Identification of l-fucose-binding proteins from the Nile tilapia(Oreochromis niloticus L.)serum[J]. Fish Shellfish Immunol, 2009, 27(3):478-485.
Tian J, Sun B, Luo Y, et al. Distribution of IgM, IgD and IgZ in mandarin fish, Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation[J]. Aquaculture, 2009, 288(1):14-21.
[16]
Zhang YA, Salinas I, Li J, et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity[J]. Nat Immunol, 2010, 11(9):827-835.
Fischer C, Bouneau L, Ozouf-Costaz C, et al. Conservation of the T-cell receptor alpha/delta linkage in the teleost fish Tetraodon nigroviridis[J]. Genomics, 2002, 79(2):241-248.
[20]
Nam BH, Hirono I, Aoki T. The four TCR genes of teleost fish:the cDNA and genomic DNA analysis of Japanese flounder(Paralichthys olivaceus)TCR α-, β-, γ-, and δ-chains[J]. J Immunol, 2003, 170(6):3081-3090.
[21]
Somamoto T, Yoshiura Y, Sato A, et al. Expression profiles of TCRβ and CD8α mRNA correlate with virus-specific cell-mediated cytotoxic activity in ginbuna Crucian carp[J]. Virology, 2006, 348(2):370-377.
[22]
Shang N, Sun XF, Hu W, et al. Molecular cloning and characteriza-tion of common carp(Cyprinus carpio L.)TCRγ and CD3γ/δ chains[J]. Fish Shellfish Immunol, 2008, 24(4):412-425.
[23]
Meeker ND, Smith ACH, Frazer JK, et al. Characterization of the zebrafish T cell receptor β locus[J]. Immunogenetics, 2010, 62(1):23.
[24]
Nithikulworawong N, Yakupitiyage A, Rakshit SK, et al. Molecular characterization and increased expression of the Nile tilapia, Oreochromis niloticus(L.), T-cell receptor beta chain in response to Streptococcus agalactiae infection[J]. J Fish Dis, 2012, 35(5):343-358.
[25]
Araki K, Suetake H, Kikuchi K, et al. Characterization and expression analysis of CD3ε and CD3γ/δ in fugu, Takifugu rubripes[J]. Immunogenetics, 2005, 57(1-2):158-163.
[26]
Liu Y, Moore L, Olaf Koppang E, et al. Characterization of the CD3ζ, CD3γδ and CD3ε subunits of the T cell receptor complex in Atlantic salmon[J]. Dev Comp Immunol, 2008, 32(1):26-35.
[27]
Overgard AC, Hordvik I, Nerland AH, et al. Cloning and expression analysis of Atlantic halibut(Hippoglossus hippoglossus)CD3 genes[J]. Fish Shellfish Immunol, 2009, 27(6):707-713.
[28]
Laing KJ, Zou JJ, Purcell MK, et al. Evolution of the CD4 family:teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3[J]. J Immunol, 2006, 177(6):3939-3951.
[29]
Edholm ES, Stafford JL, Quiniou SM, et al. Channel catfish, Ictalurus punctatus, CD4-like molecules[J]. Dev Comp Immunol, 2007, 31(2):172-187.
[30]
Sun XF, Shang N, Hu W, et al. Molecular cloning and characteriza-tion of carp(Cyprinus carpio L.)CD8β and CD4-like genes[J]. Fish Shellfish Immunol, 2007, 23(6):1242-1255.
[31]
Moore LJ, Dijkstra JM, Koppang EO, et al. CD4 homologues in Atlantic salmon[J]. Fish Shellfish Immunol, 2009, 26(1):10-18.
[32]
Kato G, Goto K, Akune I, et al. CD4 and CD8 homologues in Japanese flounder, Paralichthys olivaceus:Differences in the exp-ressions and localizations of CD4-1, CD4-2, CD8α and CD8β[J]. Dev Comp Immunol, 2013, 39(3):293-301.
[33]
Hansen JD, Strassburger P. Description of an ectothermic TCR coreceptor, CD8α, in rainbow trout[J]. J Immunol, 2000, 164(6):3132-3139.
[34]
Moore LJ, Somamoto T, Lie KK, et al. Characterisation of salmon and trout CD8α and CD8β[J]. Mol Immunol, 2005, 42(10):1225-1234.
[35]
Buonocore F, Randelli E, Bird S, et al. The CD8α from sea bass(Dicentrarchus labrax L.):cloning, expression and 3D modelling[J]. Fish Shellfish Immunol, 2006, 20(4):637-646.
[36]
Hu Y, Sun B, Deng T, et al. Molecular characterization of Cynoglossus semilaevis CD28[J]. Fish Shellfish Immunol, 2012, 32(5):934-938.
[37]
Zhang YA, Hikima J, Li J, et al. Conservation of structural and functional features in a primordial CD80/86 molecule from rainbow trout(Oncorhynchus mykiss), a primitive teleost fish[J]. J Immunol, 2009, 183(1):83-96.
[38]
Sugamata R, Suetake H, Kikuchi K, et al. Teleost B7 expressed on monocytes regulates T cell responses[J]. J Immunol, 2009, 182(11):6799-6806.
[39]
Bird S, Zou J, Kono T, et al. Characterisation and expression analysis of interleukin 2(IL-2)and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny[J]. Immunogenetics, 2005, 56(12):909-923.
[40]
Díaz-Rosales P, Bird S, Wang TH, et al. Rainbow trout interleukin-2:cloning, expression and bioactivity analysis[J]. Fish Shellfish Immunol, 2009, 27(3):414-422.
Wang B, Jian J, Lu Y, et al. Complete genome sequence of strepto-coccus agalactiae ZQ0910, a pathogen causing meningoencephalitis in the GIFT strain of nile tilapia(Oreochromis niloticus)[J]. J Bacteriol, 2012, 194(18):5132-5133.
[43]
Chen M, Wang R, Li LP, et al. Screening vaccine candidate strains against Streptococcus agalactiae of tilapia based on PFGE genotype[J]. Vaccine, 2012, 42(30):6088-6092.
[44]
De Herdt P, Haesebrouck F, Charlier G, et al. Intracellular survival and multiplication of virulent and less virulent strains of Streptococcus bovis in pigeon macrophages[J]. Vet Microbiol, 1995, 45(2):157-169.
[45]
Jaso-Friedmann L, Evans DL. Mechanisms of cellular cytotoxic innate resistance in tilapia(Oreochromis nilotica)[J]. Dev Comp Immunol, 1999, 23(1):27-35.
[46]
Praveen K, Leary JH, Evans DL, et al. Molecular cloning of cellular apoptosis susceptibility(CAS)gene in Oreochromis niloticus and its proposed role in regulation of non-specific cytotoxic cell(NCC)functions[J]. Fish Shellfish Immunol, 2006, 20(4):647-655.
[47]
Zhou F, Dong Z, Fu Y, et al. Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class II B gene of Nile tilapia(Oreochromis niloticus)[J]. Aquaculture, 2013, 372-375:149-157.
[48]
Pang J, Gao F, Lu M, et al. Major histocompatibility complex class IIA and IIB genes of Nile tilapia(Oreochromis niloticus):Genomic structure, molecular polymorphism and expression patterns[J]. Fish Shellfish Immunol, 2013, 34(2):486-496.
[49]
Huang PH, Chen JY, Kuo CM. Three different hepcidins from tilapia, Oreochromis mossambicus:Analysis of their expressions and biological functions[J]. Mol Immunol, 2007, 44(8):1922-1934.
[50]
Pan CY, Peng KC, Lin CH, et al. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens[J]. Fish Shellfish Immunol, 2011, 31(2):275-285.
[51]
Huang HN, Rajanbabu V, Pan CY, et al. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5[J]. Biomaterials, 2011, 32(28):6804-6814.
[52]
Takemura A, Takano K. Transfer of maternally-derived immunogl-obulin(IgM)to larvae in tilapia, Oreochromis mossambicus[J]. Fish Shellfish Immunol, 1997, 7(6):355-363.
[53]
Dominguez M, Takemura A, Tsuchiya M, et al. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus[J]. Aquaculture, 2004, 241(1):491-500.
[54]
Partula S, De Guerra A, Fellah JS, et al. Structure and diversity of the T cell antigen receptor beta-chain in a teleost fish[J]. J Immunol, 1995, 155(2):699-706.
[55]
Wilson MR, Zhou H, Bengten E, et al. T-cell receptors in channel catfish:structure and expression of TCR α and β genes[J]. Mol Immunol, 1998, 35(9):545-557.
[56]
Yazawa R, Cooper GA, Beetz-Sargent M, et al. Functional adaptive diversity of the Atlantic salmon T-cell receptor gamma locus[J]. Mol Immunol, 2008, 45(8):2150-2157.
[57]
刘冬. 罗非鱼T淋巴细胞几种标志基因的克隆及表达研究[D]. 重庆:西南大学, 2012.
[58]
Suetake H, Araki K, Suzuki Y. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4[J]. Immunogenetics, 2004, 56(5):368-374.
[59]
Suetake H, Araki K, Akatsu K, et al. Genomic organization and expression of CD8α and CD8β genes in fugu Takifugu rubripes[J]. Fish Shellfish Immunol, 2007, 23(5):1107-1118.
[60]
Bernard D, Riteau B, Hansen JD, et al. Costimulatory receptors in a teleost fish:typical CD28, elusive CTLA4[J]. J Immunol, 2006, 176(7):4191-4200.