全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

罗非鱼免疫学研究进展

, PP. 32-39

Keywords: 罗非鱼,非特异性免疫,体液免疫,细胞免疫

Full-Text   Cite this paper   Add to My Lib

Abstract:

罗非鱼是我国主要的养殖鱼类之一,近年来频繁爆发的罗非鱼病害给罗非鱼产业造成了巨大的经济损失。鉴于免疫防治技术在水环境保护、食品安全等方面的优势,探讨鱼体免疫系统特性和免疫应答机制逐渐成为学术界的热点。就罗非鱼的非特异性免疫、体液免疫和细胞免疫等方面的研究成果作一综述,旨在为今后深入研究罗非鱼病害的免疫防治技术提供一些可行的思路和有效的依据。

References

[1]  卢迈新. 罗非鱼链球菌病研究进展[J]. 南方水产, 2010, 6(1):75-79.
[2]  Jaso-Friedmann L, Ruiz J, Bishop GR, et al. Regulation of innate immunity in tilapia:activation of nonspecific cytotoxic cells by cytokine-like factors[J]. Dev Comp Immunol, 2000, 24(1):25-36.
[3]  Praveen K, Evans DL, Jaso-Friedmann L. Constitutive expression of tumor necrosis factor-alpha in cytotoxic cells of teleosts and its role in regulation of cell-mediated cytotoxicity[J]. Mol Immunol, 2006, 43(3):279-291.
[4]  Ishimoto Y, Savan R, Endo M, et al. Non-specific cytotoxic cell rece-ptor(NCCRP)-1 type gene in tilapia(Oreochromis niloticus):its cloning and analysis[J]. Fish Shellfish Immunol, 2004, 16(2):163-172.
[5]  王秋华, 陈明, 黄维义, 等. 罗非鱼腹腔巨噬细胞分离与培养[J]. 华北农学报, 2011, 26(B12):224-228.
[6]  Rajanbabu V, Chen JY. Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus(IPNV)in Chinook salmon embryo(CHSE)-214 cells[J]. Fish Shellfish Immunol, 2011, 30(1):39-44.
[7]  Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages[J]. Peptides, 2011, 32(2):333-341.
[8]  Pan CY, Lee SC, Rajanbabu V, et al. Insights into the antibacterial and immunomodulatory functions of tilapia hepcidin(TH)2-3 against Vibrio vulnificus infection in mice[J]. Dev Comp Immunol, 2012, 36(1):166-173.
[9]  文雅, 陶妍. 尼罗罗非鱼Hepcidin抗菌肽在大肠杆菌中的融合表达及其抗菌活性[J]. 上海交通大学学报:农业科学版, 2012, 30(4):68-75.
[10]  Acosta J, Montero V, Carpio Y, et al. Cloning and functional characterization of three novel antimicrobial peptides from tilapia(Oreochromis niloticus)[J]. Aquaculture, 2013, 372-375(24):9-18.
[11]  Lee DS, Hong SH, Lee HJ, et al. Molecular cDNA cloning and analysis of the organization and expression of the IL-1β gene in the Nile tilapia, Oreochromis niloticus[J]. Comp Biochem Physiol A:Mol Integr Physiol, 2006, 143(3):307-314.
[12]  Rengmark AH, Lingaas F. Genomic structure of the Nile tilapia(Oreochromis niloticus)transferrin gene and a haplotype associated with saltwater tolerance[J]. Aquaculture, 2007, 272(1):146-155.
[13]  Argayosa AM, Lee YC. Identification of l-fucose-binding proteins from the Nile tilapia(Oreochromis niloticus L.)serum[J]. Fish Shellfish Immunol, 2009, 27(3):478-485.
[14]  禹绍国, 叶星, 张莉莉, 等. 奥利亚罗非鱼3种C型溶菌酶基因的克隆及其序列分析[J]. 农业生物技术学报, 2010, 18(1):66-74.
[15]  Tian J, Sun B, Luo Y, et al. Distribution of IgM, IgD and IgZ in mandarin fish, Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation[J]. Aquaculture, 2009, 288(1):14-21.
[16]  Zhang YA, Salinas I, Li J, et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity[J]. Nat Immunol, 2010, 11(9):827-835.
[17]  赵飞, 柯剑, 姜兰, 等. 4个品系罗非鱼血清免疫球蛋白的分离纯化及分子量测定[J]. 广东农业科学, 2011, 38(21):138-140.
[18]  王培, 鲁义善, 王蓓, 等. 无乳链球菌诱导吉富罗非鱼分泌型免疫球蛋白 M(sIgM)重链基因的克隆及原核表达[J]. 生物技术通报, 2014(2):116-123.
[19]  Fischer C, Bouneau L, Ozouf-Costaz C, et al. Conservation of the T-cell receptor alpha/delta linkage in the teleost fish Tetraodon nigroviridis[J]. Genomics, 2002, 79(2):241-248.
[20]  Nam BH, Hirono I, Aoki T. The four TCR genes of teleost fish:the cDNA and genomic DNA analysis of Japanese flounder(Paralichthys olivaceus)TCR α-, β-, γ-, and δ-chains[J]. J Immunol, 2003, 170(6):3081-3090.
[21]  Somamoto T, Yoshiura Y, Sato A, et al. Expression profiles of TCRβ and CD8α mRNA correlate with virus-specific cell-mediated cytotoxic activity in ginbuna Crucian carp[J]. Virology, 2006, 348(2):370-377.
[22]  Shang N, Sun XF, Hu W, et al. Molecular cloning and characteriza-tion of common carp(Cyprinus carpio L.)TCRγ and CD3γ/δ chains[J]. Fish Shellfish Immunol, 2008, 24(4):412-425.
[23]  Meeker ND, Smith ACH, Frazer JK, et al. Characterization of the zebrafish T cell receptor β locus[J]. Immunogenetics, 2010, 62(1):23.
[24]  Nithikulworawong N, Yakupitiyage A, Rakshit SK, et al. Molecular characterization and increased expression of the Nile tilapia, Oreochromis niloticus(L.), T-cell receptor beta chain in response to Streptococcus agalactiae infection[J]. J Fish Dis, 2012, 35(5):343-358.
[25]  Araki K, Suetake H, Kikuchi K, et al. Characterization and expression analysis of CD3ε and CD3γ/δ in fugu, Takifugu rubripes[J]. Immunogenetics, 2005, 57(1-2):158-163.
[26]  Liu Y, Moore L, Olaf Koppang E, et al. Characterization of the CD3ζ, CD3γδ and CD3ε subunits of the T cell receptor complex in Atlantic salmon[J]. Dev Comp Immunol, 2008, 32(1):26-35.
[27]  Overgard AC, Hordvik I, Nerland AH, et al. Cloning and expression analysis of Atlantic halibut(Hippoglossus hippoglossus)CD3 genes[J]. Fish Shellfish Immunol, 2009, 27(6):707-713.
[28]  Laing KJ, Zou JJ, Purcell MK, et al. Evolution of the CD4 family:teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3[J]. J Immunol, 2006, 177(6):3939-3951.
[29]  Edholm ES, Stafford JL, Quiniou SM, et al. Channel catfish, Ictalurus punctatus, CD4-like molecules[J]. Dev Comp Immunol, 2007, 31(2):172-187.
[30]  Sun XF, Shang N, Hu W, et al. Molecular cloning and characteriza-tion of carp(Cyprinus carpio L.)CD8β and CD4-like genes[J]. Fish Shellfish Immunol, 2007, 23(6):1242-1255.
[31]  Moore LJ, Dijkstra JM, Koppang EO, et al. CD4 homologues in Atlantic salmon[J]. Fish Shellfish Immunol, 2009, 26(1):10-18.
[32]  Kato G, Goto K, Akune I, et al. CD4 and CD8 homologues in Japanese flounder, Paralichthys olivaceus:Differences in the exp-ressions and localizations of CD4-1, CD4-2, CD8α and CD8β[J]. Dev Comp Immunol, 2013, 39(3):293-301.
[33]  Hansen JD, Strassburger P. Description of an ectothermic TCR coreceptor, CD8α, in rainbow trout[J]. J Immunol, 2000, 164(6):3132-3139.
[34]  Moore LJ, Somamoto T, Lie KK, et al. Characterisation of salmon and trout CD8α and CD8β[J]. Mol Immunol, 2005, 42(10):1225-1234.
[35]  Buonocore F, Randelli E, Bird S, et al. The CD8α from sea bass(Dicentrarchus labrax L.):cloning, expression and 3D modelling[J]. Fish Shellfish Immunol, 2006, 20(4):637-646.
[36]  Hu Y, Sun B, Deng T, et al. Molecular characterization of Cynoglossus semilaevis CD28[J]. Fish Shellfish Immunol, 2012, 32(5):934-938.
[37]  Zhang YA, Hikima J, Li J, et al. Conservation of structural and functional features in a primordial CD80/86 molecule from rainbow trout(Oncorhynchus mykiss), a primitive teleost fish[J]. J Immunol, 2009, 183(1):83-96.
[38]  Sugamata R, Suetake H, Kikuchi K, et al. Teleost B7 expressed on monocytes regulates T cell responses[J]. J Immunol, 2009, 182(11):6799-6806.
[39]  Bird S, Zou J, Kono T, et al. Characterisation and expression analysis of interleukin 2(IL-2)and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny[J]. Immunogenetics, 2005, 56(12):909-923.
[40]  Díaz-Rosales P, Bird S, Wang TH, et al. Rainbow trout interleukin-2:cloning, expression and bioactivity analysis[J]. Fish Shellfish Immunol, 2009, 27(3):414-422.
[41]  Paterson AM, Vanguri VK, Sharpe AH. SnapShot:B7/CD28 Costimulation[J]. Cell, 2009, 137(5):974-974.
[42]  Wang B, Jian J, Lu Y, et al. Complete genome sequence of strepto-coccus agalactiae ZQ0910, a pathogen causing meningoencephalitis in the GIFT strain of nile tilapia(Oreochromis niloticus)[J]. J Bacteriol, 2012, 194(18):5132-5133.
[43]  Chen M, Wang R, Li LP, et al. Screening vaccine candidate strains against Streptococcus agalactiae of tilapia based on PFGE genotype[J]. Vaccine, 2012, 42(30):6088-6092.
[44]  De Herdt P, Haesebrouck F, Charlier G, et al. Intracellular survival and multiplication of virulent and less virulent strains of Streptococcus bovis in pigeon macrophages[J]. Vet Microbiol, 1995, 45(2):157-169.
[45]  Jaso-Friedmann L, Evans DL. Mechanisms of cellular cytotoxic innate resistance in tilapia(Oreochromis nilotica)[J]. Dev Comp Immunol, 1999, 23(1):27-35.
[46]  Praveen K, Leary JH, Evans DL, et al. Molecular cloning of cellular apoptosis susceptibility(CAS)gene in Oreochromis niloticus and its proposed role in regulation of non-specific cytotoxic cell(NCC)functions[J]. Fish Shellfish Immunol, 2006, 20(4):647-655.
[47]  Zhou F, Dong Z, Fu Y, et al. Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class II B gene of Nile tilapia(Oreochromis niloticus)[J]. Aquaculture, 2013, 372-375:149-157.
[48]  Pang J, Gao F, Lu M, et al. Major histocompatibility complex class IIA and IIB genes of Nile tilapia(Oreochromis niloticus):Genomic structure, molecular polymorphism and expression patterns[J]. Fish Shellfish Immunol, 2013, 34(2):486-496.
[49]  Huang PH, Chen JY, Kuo CM. Three different hepcidins from tilapia, Oreochromis mossambicus:Analysis of their expressions and biological functions[J]. Mol Immunol, 2007, 44(8):1922-1934.
[50]  Pan CY, Peng KC, Lin CH, et al. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens[J]. Fish Shellfish Immunol, 2011, 31(2):275-285.
[51]  Huang HN, Rajanbabu V, Pan CY, et al. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5[J]. Biomaterials, 2011, 32(28):6804-6814.
[52]  Takemura A, Takano K. Transfer of maternally-derived immunogl-obulin(IgM)to larvae in tilapia, Oreochromis mossambicus[J]. Fish Shellfish Immunol, 1997, 7(6):355-363.
[53]  Dominguez M, Takemura A, Tsuchiya M, et al. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus[J]. Aquaculture, 2004, 241(1):491-500.
[54]  Partula S, De Guerra A, Fellah JS, et al. Structure and diversity of the T cell antigen receptor beta-chain in a teleost fish[J]. J Immunol, 1995, 155(2):699-706.
[55]  Wilson MR, Zhou H, Bengten E, et al. T-cell receptors in channel catfish:structure and expression of TCR α and β genes[J]. Mol Immunol, 1998, 35(9):545-557.
[56]  Yazawa R, Cooper GA, Beetz-Sargent M, et al. Functional adaptive diversity of the Atlantic salmon T-cell receptor gamma locus[J]. Mol Immunol, 2008, 45(8):2150-2157.
[57]  刘冬. 罗非鱼T淋巴细胞几种标志基因的克隆及表达研究[D]. 重庆:西南大学, 2012.
[58]  Suetake H, Araki K, Suzuki Y. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4[J]. Immunogenetics, 2004, 56(5):368-374.
[59]  Suetake H, Araki K, Akatsu K, et al. Genomic organization and expression of CD8α and CD8β genes in fugu Takifugu rubripes[J]. Fish Shellfish Immunol, 2007, 23(5):1107-1118.
[60]  Bernard D, Riteau B, Hansen JD, et al. Costimulatory receptors in a teleost fish:typical CD28, elusive CTLA4[J]. J Immunol, 2006, 176(7):4191-4200.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133