全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

环境DNA研究技术及其在生态学领域的应用

, PP. 49-55

Keywords: 环境DNA,宏基因组学,生态学,物种分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

环境DNA(environmentalDNA,eDNA)是指从环境样本中提取的所有DNA的集合,包括环境微生物以及从生物体上脱落下来的活细胞DNA和因生物死亡后细胞破碎而游离出的胞外DNA。按照宏基因组学概念,eDNA研究技术主要是指直接从环境样本中提取基因组DNA后进行测序分析的方法。较传统的研究方法,eDNA应用最大的优势在于更有效地解决了特定环境样本中宏量生物的分类问题,利于更进一步研究生态学问题,该技术耗时短、成本低,准确度高。第二代高通量测序技术的开发成功,进一步拓展了eDNA的应用范围,并开始从微生物学向动、植物学领域拓展,促进了传统生态学领域在研究方法和思想上的一场革新。对eDNA的研究技术在生物多样性分析、动物食性分析、生物量估测等生态学领域的应用进行了综述,最后对eDNA研究技术的发展趋势和前景作出展望。

References

[1]  DJ, Campbell RG, Gulden RH, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39:2977-2991.
[2]  G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45:219-235.
[3]  E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795.
[4]  A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods, 1987, 7:57-66.
[5]  MR, August PR, Bettermann AD, et al. Cloning the soil meta-genome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J]. Applied and Environmental Microbiology, 2000, 66:2541-2547.
[6]  J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68:669.
[7]  K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2012, 21:1966-1979.
[8]  R, de Danieli S, Miquel C, et al. Tracking earthworm communities form soil DNA[J]. Molecular Ecology, 2012, 21:2017-2030.
[9]  J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry and Biology, 1988, 5:245-249.
[10]  P, Tyson GW. Microbiology:Metagenomics[J]. Nature, 2008, 455(7212):481-483.
[11]  National Academics. The new science of metagenomics:revealing the secrets of our microbial planet[M]. Washington DC:National Academics Press, 2007:1-170.
[12]  魏军, 赵志军. 下一代测序技术在分子诊断中的应用[J]. 分子诊断与治疗杂志, 2013, 5(3):145-151.
[13]  Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 323:133-138.
[14]  周与华, 李擎天, 郭晓奎. 运用454焦磷酸测序技术对病原菌16S-rDNA的分析[J]. 检测医学, 2011, 26(6):364-367.
[15]  DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature, 2008, 452(7189):872-876.
[16]  D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy-in assessing new approaches, it''s time for DNA''s unique contribution to take a central role[J]. Nature, 2002, 418:479.
[17]  PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes[J]. Proc Biol Sci, 2003, 270:313-321.
[18]  F, Coissac E, Taberlet P. Metabarcoding a new way to analyze biodiversity[J]. Biofutur, 2011, 3:30-32.
[19]  F, Deagle BE, Symondson WO, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950.
[20]  A. Soil molecular microbial ecology at age 20:methodological challenges for the future[J]. Soil Biol, 2000, 32:1499-1504.
[21]  G, de Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE of PCR-amplified genes coding for 16S rRNA[J]. Appl Env Microbiol, 1993, 59:695-700.
[22]  Schwieger F, Tebbe CC. A new approach to utilize PCR-single strand-conformation polymorphism for 16S rRNA based microbial community analysis[J]. Appl Env Microbiol, 1998, 64:4870-4876.
[23]  J, Jurgens K, Bruchmuller I, et al. Use of group-specific PCR primers for identification of chrysophytes by denaturing gradient gel electrophoresis[J]. Aquatic Microbial Ecology, 2005, 39:171-182.
[24]  Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes[J]. PLoS Biol, 2004, 2:1657-1663.
[25]  ID, Hebert PDN. Biological identification of springtails(Collembola:Hexapoda)from the Canadian Arctic, using mitochondrial DNA barcodes[J]. Canadian Journal of Zoology, 2004, 82:749-754.
[26]  R, Carlsen T, Kumar S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21:1897-1908.
[27]  FT, Jos K, Lars L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8):e41732.
[28]  Zhang XQ, Duan A, Zhang JG. Tree biomass estimation of Chinese fir(Cunninghamia lanceolata)based on bayesian method[J]. PLoS One, 2013, 8(11):e79868.
[29]  Ville K, Minna R, Markus H, et al. Single tree biomass modelling using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013, 85:66-73.
[30]  Pare D, Bernier P, Lafleur B, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests[J]. Can J Forest Res, 2013, 43:1084.
[31]  Teruhiko T, Toshifumi M, Hiroki Y, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4):e35868.
[32]  Francois P, Bruce E, William OC, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950.
[33]  Holechek JL, Vavra M, Pieper RD. Botanical composition determination of range diets:a review[J]. Journal of Range Management, 1982, 35:309-315.
[34]  Moreby SJ. An aid to the identification of arthropod fragments in the faeces of gamebird chicks(Galliformes)[J]. Ibis, 1988, 130:519-526.
[35]  Holland JM. The agroecology of carabid beetles[M]. UK:Intercept Ltd, 2002:111-136.
[36]  Jervis MA. Insects as natural enemies:a practical perspective. Berlin:Springer, 2005:299-434.
[37]  Symondson WOC. Molecular identification of prey in predator diets[J]. Molecular Ecology, 2002, 11:627-641.
[38]  Rothman JM, Chapman CA, Hansen JL, et al. Rapid assessment of the nutritional value of foods eaten by mountain gorillas:applying near-infrared reflectance spectroscopy to primatology[J]. International Journal of Primatology, 2009, 30:729-742.
[39]  Gratton C, Donaldson J, Vander Zanden MJ. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland[J]. Ecosystems, 2008, 11:764-774.
[40]  Harper GL, Sheppard SK, Harwood JD, et al. Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators[J]. Bulletin of Entomological Research, 2006, 96:295-304.
[41]  Symondson WOC, Liddell JE. The Ecology of agricultural pests:biochemical approaches[M]. London:Chapman & Hall, 1996:457-468.
[42]  Foley WJ, Mcllwee A, Lawler I, et al. Ecological applications of near infrared reflectance spectroscopy-a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance[J]. Oecologia, 1988, 116:293-305.
[43]  Jervis MA. Insects as natural enemies:a practical perspective[M]. Berlin:Springer, 2005:299-434.
[44]  Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59:695-700.
[45]  A, Akkermans ADL, de Vos WD. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints[J]. Applied and Environmental Microbiology, 1988, 64:4581-4587.
[46]  Shehzad W, Riaz T, Nawaz MA, et al. Carnivore diet analysis based on next generation sequencing:application to the leopard cat(Prionailurus bengalensis)in Pakistan[J]. Molecualr Ecology, 2012, 21:1951-1965.
[47]  Deagle BE, Kirkwood R, Jarman SN. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces[J]. Molecualr Ecology, 2009, 18:2022-2038.
[48]  Murray DC, Bunce M, Cannell BL, et al. DNA-based faecal dietary analysis:a comparison of qPCR and high throughput sequencing approaches[J]. PLoS One, 2011, 6:e25776.
[49]  Bohmann K, Monadjem A, Lehmkuhl Noer C, et al. Molecular diet analysis of two African free-tailed bats(Molossidae)using high throughput sequencing[J]. PLoS One, 2011, 6:e21441.
[50]  Brown DS. Molecular analysis of the diet of british reptiles[D]. UK:Cardiff University, 2011.
[51]  Soininen EM, Valentini A, Coissac E, et al. Analysing diet of small herbivores:the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures[J]. Frontiers in Zoology, 2009, 6:16.
[52]  Raye G, Miquel C, Coissac E, et al. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing:chamois diet in autumn as a case study[J]. Ecological Research, 2011, 26:265-276.
[53]  朱怀诚, 欧阳舒. 孢子花粉与植物大化石:地质记录的差异及其古植物学意义[J]. 古生物学报, 2005, 44(2):161-174.
[54]  Traverse A. Palaeopalynolgoy[M]. Boston, London, Sydney, Wellington:UNWIN HYMAN, 1988:1-600.
[55]  Taylor TN. Paleobotany:an introduction to fossil plant biology[M]. New York:McGraw Hill Book Co, 1981:1-589.
[56]  Willerslev E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795.
[57]  Hofreiter M, Mead JI, Martin P, Poinar HN. Molecular caving[J]. Current Biology, 2003, 13:693-695.
[58]  Lydolph MC, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA[J]. Applied and Environmental Microbiology, 2005, 71:1012-1017.
[59]  Sonstebo JH, Gielly L, Brysting AK, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate[J]. Molecular Ecology Resources, 2010, 10:1009-1018.
[60]  Andersen K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2011, 21:1966-1979.
[61]  Jorgensen T, Kjar KH, Haile JS, et al. Islands in the ice:detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding[J]. Molecular Ecology, 2012, 21:1980-1988.
[62]  Yoccoz NG, Brathen KA, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity[J]. Molecular Ecology, 2012, 21:3647-3655.
[63]  Mikkel WP, Aurelien G, Ludovic O, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa[J]. Quaternary Science Reviews, 2013, 75:161-168.
[64]  Baird D, Hajibabaei M. Biomonitoring 2.0:a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing[J]. Molecular Ecology, 2012, 21:2039-2044.
[65]  Yoccoz NG. The future of environmental DNA in ecology[J]. Molecular Ecology, 2012, 21:2031-2038.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133