DJ, Campbell RG, Gulden RH, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39:2977-2991.
[2]
G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45:219-235.
[3]
E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795.
[4]
A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods, 1987, 7:57-66.
[5]
MR, August PR, Bettermann AD, et al. Cloning the soil meta-genome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J]. Applied and Environmental Microbiology, 2000, 66:2541-2547.
[6]
J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68:669.
[7]
K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2012, 21:1966-1979.
[8]
R, de Danieli S, Miquel C, et al. Tracking earthworm communities form soil DNA[J]. Molecular Ecology, 2012, 21:2017-2030.
[9]
J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry and Biology, 1988, 5:245-249.
National Academics. The new science of metagenomics:revealing the secrets of our microbial planet[M]. Washington DC:National Academics Press, 2007:1-170.
DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature, 2008, 452(7189):872-876.
[16]
D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy-in assessing new approaches, it''s time for DNA''s unique contribution to take a central role[J]. Nature, 2002, 418:479.
[17]
PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes[J]. Proc Biol Sci, 2003, 270:313-321.
[18]
F, Coissac E, Taberlet P. Metabarcoding a new way to analyze biodiversity[J]. Biofutur, 2011, 3:30-32.
[19]
F, Deagle BE, Symondson WO, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950.
[20]
A. Soil molecular microbial ecology at age 20:methodological challenges for the future[J]. Soil Biol, 2000, 32:1499-1504.
[21]
G, de Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE of PCR-amplified genes coding for 16S rRNA[J]. Appl Env Microbiol, 1993, 59:695-700.
[22]
Schwieger F, Tebbe CC. A new approach to utilize PCR-single strand-conformation polymorphism for 16S rRNA based microbial community analysis[J]. Appl Env Microbiol, 1998, 64:4870-4876.
[23]
J, Jurgens K, Bruchmuller I, et al. Use of group-specific PCR primers for identification of chrysophytes by denaturing gradient gel electrophoresis[J]. Aquatic Microbial Ecology, 2005, 39:171-182.
[24]
Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes[J]. PLoS Biol, 2004, 2:1657-1663.
[25]
ID, Hebert PDN. Biological identification of springtails(Collembola:Hexapoda)from the Canadian Arctic, using mitochondrial DNA barcodes[J]. Canadian Journal of Zoology, 2004, 82:749-754.
[26]
R, Carlsen T, Kumar S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21:1897-1908.
[27]
FT, Jos K, Lars L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8):e41732.
[28]
Zhang XQ, Duan A, Zhang JG. Tree biomass estimation of Chinese fir(Cunninghamia lanceolata)based on bayesian method[J]. PLoS One, 2013, 8(11):e79868.
[29]
Ville K, Minna R, Markus H, et al. Single tree biomass modelling using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013, 85:66-73.
[30]
Pare D, Bernier P, Lafleur B, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests[J]. Can J Forest Res, 2013, 43:1084.
[31]
Teruhiko T, Toshifumi M, Hiroki Y, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4):e35868.
[32]
Francois P, Bruce E, William OC, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950.
[33]
Holechek JL, Vavra M, Pieper RD. Botanical composition determination of range diets:a review[J]. Journal of Range Management, 1982, 35:309-315.
[34]
Moreby SJ. An aid to the identification of arthropod fragments in the faeces of gamebird chicks(Galliformes)[J]. Ibis, 1988, 130:519-526.
[35]
Holland JM. The agroecology of carabid beetles[M]. UK:Intercept Ltd, 2002:111-136.
[36]
Jervis MA. Insects as natural enemies:a practical perspective. Berlin:Springer, 2005:299-434.
[37]
Symondson WOC. Molecular identification of prey in predator diets[J]. Molecular Ecology, 2002, 11:627-641.
[38]
Rothman JM, Chapman CA, Hansen JL, et al. Rapid assessment of the nutritional value of foods eaten by mountain gorillas:applying near-infrared reflectance spectroscopy to primatology[J]. International Journal of Primatology, 2009, 30:729-742.
[39]
Gratton C, Donaldson J, Vander Zanden MJ. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland[J]. Ecosystems, 2008, 11:764-774.
[40]
Harper GL, Sheppard SK, Harwood JD, et al. Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators[J]. Bulletin of Entomological Research, 2006, 96:295-304.
[41]
Symondson WOC, Liddell JE. The Ecology of agricultural pests:biochemical approaches[M]. London:Chapman & Hall, 1996:457-468.
[42]
Foley WJ, Mcllwee A, Lawler I, et al. Ecological applications of near infrared reflectance spectroscopy-a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance[J]. Oecologia, 1988, 116:293-305.
[43]
Jervis MA. Insects as natural enemies:a practical perspective[M]. Berlin:Springer, 2005:299-434.
[44]
Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59:695-700.
[45]
A, Akkermans ADL, de Vos WD. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints[J]. Applied and Environmental Microbiology, 1988, 64:4581-4587.
[46]
Shehzad W, Riaz T, Nawaz MA, et al. Carnivore diet analysis based on next generation sequencing:application to the leopard cat(Prionailurus bengalensis)in Pakistan[J]. Molecualr Ecology, 2012, 21:1951-1965.
[47]
Deagle BE, Kirkwood R, Jarman SN. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces[J]. Molecualr Ecology, 2009, 18:2022-2038.
[48]
Murray DC, Bunce M, Cannell BL, et al. DNA-based faecal dietary analysis:a comparison of qPCR and high throughput sequencing approaches[J]. PLoS One, 2011, 6:e25776.
[49]
Bohmann K, Monadjem A, Lehmkuhl Noer C, et al. Molecular diet analysis of two African free-tailed bats(Molossidae)using high throughput sequencing[J]. PLoS One, 2011, 6:e21441.
[50]
Brown DS. Molecular analysis of the diet of british reptiles[D]. UK:Cardiff University, 2011.
[51]
Soininen EM, Valentini A, Coissac E, et al. Analysing diet of small herbivores:the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures[J]. Frontiers in Zoology, 2009, 6:16.
[52]
Raye G, Miquel C, Coissac E, et al. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing:chamois diet in autumn as a case study[J]. Ecological Research, 2011, 26:265-276.
Traverse A. Palaeopalynolgoy[M]. Boston, London, Sydney, Wellington:UNWIN HYMAN, 1988:1-600.
[55]
Taylor TN. Paleobotany:an introduction to fossil plant biology[M]. New York:McGraw Hill Book Co, 1981:1-589.
[56]
Willerslev E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795.
[57]
Hofreiter M, Mead JI, Martin P, Poinar HN. Molecular caving[J]. Current Biology, 2003, 13:693-695.
[58]
Lydolph MC, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA[J]. Applied and Environmental Microbiology, 2005, 71:1012-1017.
[59]
Sonstebo JH, Gielly L, Brysting AK, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate[J]. Molecular Ecology Resources, 2010, 10:1009-1018.
[60]
Andersen K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2011, 21:1966-1979.
[61]
Jorgensen T, Kjar KH, Haile JS, et al. Islands in the ice:detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding[J]. Molecular Ecology, 2012, 21:1980-1988.
[62]
Yoccoz NG, Brathen KA, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity[J]. Molecular Ecology, 2012, 21:3647-3655.
[63]
Mikkel WP, Aurelien G, Ludovic O, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa[J]. Quaternary Science Reviews, 2013, 75:161-168.
[64]
Baird D, Hajibabaei M. Biomonitoring 2.0:a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing[J]. Molecular Ecology, 2012, 21:2039-2044.
[65]
Yoccoz NG. The future of environmental DNA in ecology[J]. Molecular Ecology, 2012, 21:2031-2038.