AD. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13:115-155.
[2]
WJ, Ham BK, Kim JY. Plasmodesmata-bridging the gap between neighboring plant cells[J]. Trends Cell Biology, 2009, 19(10):495-503.
[3]
Y, Huang L, Chu H, et al. Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns[J]. Molecules and Cells, 2011, 32(6):519-526.
[4]
WJ, Bouché-Pillon S, Jackson DP, et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata[J].Science, 1995, 270(5244):1980-1983.
[5]
JY, Colinas J, Wang JY, et al. Transcriptional and posttranscrip-tional regulation of transcription factor expression in Arabidopsis roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15):6055-6060.
[6]
JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis[J]. Development, 2003, 130(18):4351-4362.
[7]
T, Mayer KF, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996.122(1):87-96.
Y, Jung J, Chu H, et al. A non-cell-autonomous mechanism for the control of plant architecture and epidermal differentiation involves intercellular trafficking of BREVIPEDICELLUS protein[J]. Func-tional Plant Biology, 2009, 36(3):280-289.
[10]
L, Vincent C, Jang S, et al. FT protein movement contri-butes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033.
[11]
A, Kobayashi Y, Goto K, et al. TWIN SISTER OF FT(TSF)acts as a floral pathway integrator redundantly with FT[J]. Plant and Cell Physiology, 2005, 46(8):1175-1189.
[12]
L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture[J]. The Plant Cell, 2007, 19(3):767-778.
[13]
A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-781.
[14]
SL, Martinelli AP, Dinh QD, et al. Intercellular transport of epidermis expressed MADS domain transcription factors and their effect on plant morphology and floral transition[J]. The Plant Journal, 2010, 63(1):60-72.
[15]
K, Horiguchi G, Usami T, et al. ANGUSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves[J]. Current Biology, 2013, 23(9):788-792.
[16]
J, Wang X, Lee JY, et al. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning[J]. The Plant Cell, 2013, 25(1):187-201.
[17]
H, Levesque MP, Vernoux T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of end-odermis in plants[J]. Science, 2007, 316(5823):421-425.
[18]
K, Sena G, Nawy T, et al. Intercellular movement of the putative transcription factor SHR in root patterning[J]. Nature, 2001, 413(6853):307-311.
[19]
H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J]. Cell, 2010, 143(4):606-616.
[20]
A, Moller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010, 464(7290):913-916.
[21]
C, Lee MM, Gonzalez A, et al. The bHLH genes GLAB-RA3(GL3)and ENHANCER OF GLABRA3(EGL3)specify epidermal cell fate in the Arabidopsis root[J]. Development, 2003, 130(26):6431-6439.
[22]
T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs[J]. Annual Review of Plant Biology, 2008, 59:365-386.
[23]
P, Crawford K. Plasmodesmata:gatekeepers for cell-to-cell transport of developmental signals in plants[J]. Annual Review of cell and Developmental Biology, 2000, 16:393-421.
N, Jamilena M, Zurita S, et al. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity[J]. The Plant Journal:for Cell and Molecular Biology, 1999, 20(6):685-693.
JY, Rim Y, Wang J, et al. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking[J]. Genes and Development, 2005, 19(7):788-793.
[31]
JY, Yuan Z, Cilia M, et al. Intercellular trafficking of a KNOT-TED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis[J]. Proceedings of the National Academy of Scie-nces of the United States of America, 2002, 99(6):4103-4108.
[32]
T, Kurata T, Tominaga R, et al. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation[J]. Development, 2002, 129(23):5409-5419.
[33]
Y, Huang L, Chu H, et al. Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns[J]. Molecular Cell, 2011, 32(6):519-526.
[34]
K, Wu S, MacRae-Crerar A, et al. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor[J]. Current Biology, 2011, 21(18):1559-1564.
[35]
MC, Haughn G, Saedler H, et al. Non-cell-autonomous fun-ction of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking[J]. Development, 1996, 122(11):3433-3441.
[36]
宋喜娥, 李润植.植物转录因子的胞间运动[J].细胞生物学杂志, 2007, 29:56-60.
[37]
L, Davies KA, Bergmann DC, et al. Peptide signaling in plant development[J]. Current Biology, 2011, 21(9):R356-364.
[38]
S, Holt AL, Rubio-Somoza I, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Developmental Cell, 2013, 24(2):125-132.
[39]
Sparks E, Wachsman G, Benfey PN. Spatiotemporal signalling in plant development[J]. Nature Reviews Genetics, 2013, 14(9):631-644.
[40]
J, Xu J, Seifertova D, et al. Polar PIN localization directs auxin flow in plants[J]. Science, 2006, 312(5775):883-883.
[41]
Y, Wink RH, Ingram GC, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009, 19(11):909-914.
[42]
Y, Grabowski S, Bleckmann A, et al. Moderation of Arabido-psis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes[J]. Current Biology, 2013, 23(5):362-371.
[43]
W, Wei L, Xu J, et al. Arabidopsis tyrosylprotein sulfotransfe-rase acts in the auxin/PLETHORA pathway in regulating postembr-yonic maintenance of the root stem cell niche[J]. Plant Cell, 2010, 22(11):3692-3709.
[44]
A, Lee JY, Roberts CJ, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010, 465(7296):316-321.
[45]
S, Koi S, Hashimoto T, et al. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root[J]. Development, 2011, 138(11):2303-2313.
[46]
H, Hao Y, Kovtun M, et al. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis[J]. Plant Physiology, 2011, 157(3):1221-1231.
[47]
Y, Sakagami Y. Peptide hormones in plants[J]. The Annual Review of Plant Biology, 2006, 57:649-674.