Walters DR, Fountaine JM. Practical application of induced resistance to plant diseases:an appraisal of effectiveness under field conditions[J]. Journal of Agricultural Sciences(Camb), 2009, 5:523-535.
[7]
Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities[J]. Trends in Plant Science, 2005, 10:615-620.
[8]
Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11:15-19.
[9]
Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480):406-410.
[10]
Luo J, Liu H, Zhou T, et al. An-1 encodes a basic helix-Loop-helix protein that regulates awn development, grain size, and grain number in rice[J]. The Plant Cell, 2013, 25(9):3360-3376.
[11]
D''Halluin K, Vanderstraeten C, Van Hulle J, et al. Targeted molecular trait stacking in cotton through targeted double-strand break induction[J]. Plant Biotechnology Journal, 2013, 11(8):933-941.
[12]
Koh S, Kim H, Kim J, et al. A novel light-dependent selection marker system in plants[J]. Plant Biotechnology Journal, 2011, 9(3):348-358.
[13]
Gudynaite-Savitch L, Johnson AD, Miki BL. Strategies to mitigate transgene-promoter interactions[J]. Plant Biotechnology Journal, 2009, 7(5)472-485.
[14]
Karimi M, Inze D, Van Lijsebettens M, et al. Gateway vectors for transformation of cereals[J]. Trends in Plant Science, 2012, 18(1):1-4.
[15]
国际农业生物技术应用服务组织(ISAAA)网站. Projected impacts of agricultural biotechnologies for fruits and vegetables in the Philippines and Indonesia. http://www.isaaa.org/resources/publications/projectedimpacts2009/download/Projected_Impacts_2009-complete.pdf(2010年3月)[2014年2月].
[16]
Lee YH, Jung M, Shin SH, et al. Transgenic peppers that are highly tolerant to a new CMV pathotype[J]. Plant Cell Reports, 2009, 28(2):223-232.
[17]
Pons E, Peris JE. Pe?a L. Field performance of transgenic citrus trees:assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics[J]. BMC Biotechnology, 2012, 12:41-55.
Yang Q, Li Z, Li W, et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize[J]. Proceedings of the National Academy of Sciences, 2013, 110(42):16969-16974.
[23]
Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1):43-50.
Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genetics, 2009, 41(12):1275-1283.
[26]
Potato Genome Sequencing Consortium, Xu X, Pan S, et al. Genome Sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355):189-195.
[27]
Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics, 2011, 43(10):1035-1039.
[28]
Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485:635-641.
[29]
Qi j, Liu X, Shen D, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity[J]. Nature Genetics, 2013, 45(12):1510-1515.
[30]
Rommens CM. Barriers and paths to market for genetically engine-ered crops[J]. Plant Biotechnology Journal, 2010, 8:101-111.
[31]
Naqvi S, Farre G, Sanahuja G, et al. When more is better:mul-tigene engineering in plants[J]. Trends in Plant Science, 2010, 15(1):48-56.