Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. Biol Chem, 2004, 279(50):52361-52365.
[2]
Huntzinger E, Izaurralde E. Gene silencing by microRNAs:contributions of translational repression and mRNA decay[J]. Nat Rev Genet, 2011, 12:99-110.
[3]
Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery:an intricate network[J]. Biochim Biophys Acta, 2010, 1799:694-701.
[4]
Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J]. RNA, 2006, 12:1626-1632.
[5]
Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochem Biophys Res Commun, 2008, 376:728-732.
[6]
Elia L, Quintavalle M, Zhang J, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice:correlates with human disease[J]. Cell Death Differ, 2009, 16(12):1590-1598.
Wang T, Li MZ, Guan JQ, et al. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism[J]. Int J Mol Sci, 2011, 12:7950-7959.
[9]
Kajimoto K, Naraba H, Iwa N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J]. RNA, 2006, 12:1626-1632.
[10]
Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Genes Dev, 2009, 23(18):2166-2178.
[11]
Jin W, Dodson MV, Moore SS, et al. Characterization of microRNA expression in bovine adipose tissues:a potential regulatory mechanism of subcutaneous adipose tissue development[J]. BMC Mol Biol, 2011, 11:29.
[12]
Li GX, Li YJ, Li XJ, et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing[J]. J Cell Biochem, 2011, 112(5):1318-1328.
[13]
Li H, Zhang Z, Zhou X, et al. Effects of MicroRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes[J]. Mol Biol Rep, 2011, 38:4273-4280.
Sempere LF, Cole CN, McPeek MA, et al. The phylogenetic distribution of metazoan microRNAs:insights into evolutionary complexity and constraint[J]. J Exp Zool Part B, 2006, 306B(6):575-588.
[16]
Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice[J]. Hum Mol Genet, 2010, 19:R169-R175.
[17]
He ZY, Yu JW, Zhou CY, et al. MiR-143 is not essential for adipose development as revealed by in vivo antisense targeting[J]. Biotechnol Lett, 2013, 35:499-507.
[18]
Romao JM, Jin W, Dodson MV, et al. MicroRNA regulation in mammalian adipogenesis[J]. Exp Biol Med(Maywood), 2011, 236(9):997-1004.
[19]
Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are down-regulated in obesity[J]. Diabetes, 2009, 58(5):1050-1057.
[20]
Takasawa K, Kubota N, Terauchi Y, et al. Impactof increased PPAR gamma activity in adipocytes in vivo on adiposity, insulin sensitivity and the effects of rosiglitazone treatment[J]. Endocr J, 2008, 55(4):767-776.
[21]
Tang QQ, Gr?nborg M, Huang HY, et al. Sequential phosphorylation of CCAAT enhancer-binding protein by MAPK and glycogen synthase kinase 3beta is required for adipogenesis[J]. Proc Natl Acad Sci USA, 2005, 102(28):9766-9771.
Wanq T, Wanq Y, Kontani Y, et al. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner:involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling[J]. Endocrinology, 2008, 149(1):358-366.
[24]
Furuhashi M, Tuncman G, Gorgun CZ, et al. Treatment ofdiabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2[J]. Nature, 2007, 447(7147):959-9651.
[25]
Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J]. RNA, 2006, 12:1626-1632.