Kwantes M, Liebsch D, Verelst W. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes [J]. Mol Biol Evol, 2012, 29(1):293-302.
[2]
Becker A, Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol Phylogenet Evol, 2003, 29(3):464-489.
[3]
Adamczyk BJ, Fernandez DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis [J]. Plant Physiol, 2009, 149(4):1713-1723.
[4]
Liu Y, Cui SJ, Wu F, et al. Functional conservation of MIKC*-type MADS box Genes in Arabidopsis and rice pollen [J]. Plant Cell, 2013, 25:1288-1303.
Yang Y, Fanning L, Jack T. The K domain mediates eterodimeriza-tion of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. The Plant Journal, 2003, 33(1):47-59.
[7]
Gramzow L, Theiβen G. Phylogenomics of MADS-box genes in plants—two opposing life styles in one gene family [J]. Biology, 2013, 2:1150-1164.
[8]
Shima Y, Kitagawa M, Fujisawa M, et al. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcrip-tion factor complexes with RIN [J]. Plant Mol Biol, 2013, 82(4-5):427-438.
[9]
Melzer R, Verelst W, Theiβen G. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in floral quartet-like complexes in vitro [J]. Nucl Acids Res, 2009, 37(1):144-157.
[10]
De Folter S, Angenent GC. Trans meets cis in MADS science [J]. Trends in Plant Sci, 2006, 11(5):224-231.
[11]
Kaufmann K, Melzer R, Theiβen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants [J]. Gene, 2005, 347(2):183-198.
[12]
Wu W, Huang X, Cheng J, et al. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites [J]. Mol Biol Evol, 2011, 28(1):501-511.
[13]
Veron AS, Kaufmann K, Bornberg-Bauer E. Evidence of interaction network evolution by whole-genome duplications:a case study in MADS-Box Proteins [J]. Mol Biol Evol, 2007, 24(3):670-680.
[14]
Causier B, Davies B. Analysing protein-protein interactions with the yeast two hybrid system [J]. Plant Mol Biol, 2002, 50(6):855-870.
[15]
Rijpkema AS, Gerats T, Vandenbussche M. Evolutionary complexity of MADS complexes [J]. Curr Opin Plant Biol, 2007, 10(1):32-38.
[16]
Soltis DE, Chanderbali AS, Kim S, et al. The ABC model and its applicability to basal angiosperms [J]. Ann Bot, 2007, 100(2):155-163.
[17]
Hernandez T, Martinez Castillo LP, Alvarez Buylla ER. Functional diversification of BMADS-Box homeotic regulators of flower development:adaptive evolution in protein-protein interaction domains after major gene duplication events [J]. Mol Biol Evol, 2007, 24(2):465-481.
[18]
Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus [J]. EMBO J, 1999, 18(19):5370-5379.
[19]
Leseberg CH, Eissler CL, Wang X, et al. Interaction study of MADS-domain proteins in tomato [J]. J Exp Bot, 2008, 59(8):2253-2265.
[20]
Immink R, Tonaco I, de Folter S, et al. SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation [J]. Genome Biology, 2009, 10(2):R24.
[21]
Ruokolainen S, Ng YP, Albert VA, et al. Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins [J]. BMC Plant Biol, 2010, 10:129.
[22]
Melzer R, Theiβen G. Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins [J]. Nucl Acids Res, 2009, 37(8):2723-2736.
[23]
Smaczniak C, Immink RG, Mui?o JM, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development [J]. Proc Natl Acad Sci USA, 2012, 109(5):1560-1565.
[24]
De Folter S, Shchennikova AV, Franken J, et al. A B-sister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis [J]. Plant Journal, 2006, 47(6):934-946.
[25]
Kaufmann K, Anfang N, Saedler H, Theissen G. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B-sister(ABS)protein [J]. Molecular Genetics and Genomics, 2005, 274(2):103-118.
ó’Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development [J]. New Phytologist, 2014, 201(1):16-30.
[28]
Karlova R, Boeren S, Russinova E, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1 [J]. Plant Cell, 2006, 18(3):626-638.
[29]
Helliwell CA, Wood CC, Robertson M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex [J]. Plant J, 2006, 46(2):183-192.
[30]
Yang YZ, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins [J]. Plant Mol Biol, 2004, 55(1):45-59.
[31]
Nougalli Tonaco I, Borst J, de Vries S, et al. In vivo imaging of MADS box transcription factor interactions [J]. J Exp Bot, 2006, 57(1):33-42.
[32]
De Folter S, Immink RGH, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors [J]. Plant Cell, 2005, 17(5):1424-1433.
[33]
Verelst W, Saedler H, Munster T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters [J]. Plant Physiol, 2007, 143(1):447-460.
[34]
Wu XL, Dinneny JR, Crawford KM, et al. Modes of intercellular transcription factor movement in the Arabidopsis apex [J]. Development, 2003, 130(16):3735-3745.
[35]
He C, Tian Y, Saedler R, et al. The MADS-domain protein MPF1 of Physalis Xoridana controls plant architecture, seed development and flowering time [J]. Planta, 2010, 231(3):767-777.
[36]
Van Dijk ADJ, ter Braak CJF, Immink RG, et al. Predicting and understanding transcription factor interactions based on sequence level determinants of combinatorial control [J]. Bioinformatics, 2008, 24(1):26-33.
[37]
Dreni L, Pilatone A, Yun D, et al. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy [J]. Plant Cell, 2011, 23(8):2850-2863.
[38]
Kaufmann K, Wellmer F, Mui?o JM, et al. Orchestration of floral initiation by APETALA1 [J]. Science, 2010b, 328(5974):85-89.
[39]
Gramzow L, Theissen G. A hitchhiker’s guide to the MADS world of plants [J]. Genome Biol, 2010, 11(6):214-225.
Smaczniak C, Immink RGH, Angenent GC, et al. Developmental and evolutionary diversity of plant MADS domain factors:insights from recent studies [J]. Development, 2012, 139(17):3081-3098.
[43]
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development [J]. Gene, 2003, 316:1-21.
[44]
Theiβen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes [J]. Mol Evol, 1996, 43(5):484-516.
[45]
Alvarez-Buylla ER, Pelaz S, Liljegren SJ, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals [J]. Proc Natl Acad Sci USA, 2000, 97(10):5328-5333.
[46]
De Bodt S, Raes J, Van de Peer, et al. And then there were many:MADS goes genomic [J]. Trends Plant Sci, 2003, 8(10):475-483.
[47]
Becker A, Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol Phylogenet Evol, 2003, 29(3):464-489.