全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2011 

类相关性影响可变选择性贝叶斯分类器

, PP. 1628-1633

Keywords: 选择性贝叶斯分类器,属性选择,最大相关最小冗余,贝叶斯信息准则,离散化

Full-Text   Cite this paper   Add to My Lib

Abstract:

在最大相关最小冗余(mRMR)属性选择方法的基础上,通过设置一个调节因子来改变类别相关性在属性选择中的影响程度,解决mRMR方法易于引入冗余属性的问题,提出一种类相关性影响可变选择性贝叶斯分类器(CCRISBC).为克服人为指定属性个数易于导致的分类结果随意性,采用贝叶斯信息准则来自动确定最优属性个数.为使CCRISBC能够处理含有连续变量的数据集,提出等频类别依赖最大化离散化方法,具有分类准确率高和离散化时间短的优点.UCI数据集的实验结果表明,本文方法能够有效处理离散和连续高维数据的分类问题.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133