全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

一种模糊-证据kNN分类方法

, PP. 2390-2395

Keywords: k-最近邻(k-NN),加权欧氏距离,模糊熵,折扣因子,证据理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

已有的以k-最近邻(kNearestNeighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本文提出一种模糊-证据kNN算法.首先,利用特征的模糊熵值确定每个特征的权重,基于加权欧氏距离选取k个邻居;然后,利用邻居的信息熵区别对待邻居并结合FkNN在表示信息和EkNN在融合决策方面的优势,采取先模糊化再融合的方法确定待分类样本的类别.本文的方法在UCI标准数据集上进行了测试,结果表明该方法优于已有算法.

References

[1]  Keller J M,Gray M R,Givens J A.A fuzzy k-nearest neighbor algorithm [J].IEEE Transactions on Systems,Man,and Cybernetics,1985,15(4):580-585.
[2]  Wu Y Q,Ianakiev K,Govindaraju V.Improved k-nearest neighbor classification [J].Pattern Recognition,2002,35(10):121-146.
[3]  赵莹,高隽,汪荣贵,胡静.一种新的广义最近邻方法研究[J].电子学报,2004,32(12A):196-198. Zhao Ying,Gao Jun,Wang Rong-gui,Hu Jing.An extended nearest neighbor method based on bionic pattern recognition[J].Acta Electronica Sinica,2004,32(12A):196-198.(in Chinese)
[4]  朱明旱,罗大庸,易励群.一种序列的加权kNN分类方法[J].电子学报,2009,37(11):2584-2588. Zhu Ming-han,Luo Da-yong,Yi Li-qun.A sequential weighted k-nearest neighbor classification method[J].Acta Electronica Sinica,2009,37(11):2584-2588.(in Chinese)
[5]  刘松华,张军英,许进,贾宏恩.Kernel-kNN:基于信息能度量的核k-最近邻算法 .自动化学报,2010,36(12):1681-1688.
[6]  Denux T.A k-nearest neighbor classification rule based on Dempster-Shafer theory [J].IEEE Transactions on Systems,Man,and Cybernetics,1995,25:804-813.
[7]  刘明,袁保宗,唐晓芳.证据理论k-NN规则中确定相似度参数的新方法[J].电子学报,2005,33(4):766-768. Liu Ming,Yuan Bao-zong,Tang Xiao-fang.A new approach to determine the similarity parameters in evidence theoretic k-NN rule[J].Acta Electronica Sinica,2005,33(4):766-768.(in Chinese)
[8]  Anil K G.On optimum choice of k in nearest neighbor classification [J].Computational Statistics and Data Analysis,2006,50:3113-3123.
[9]  Smets P.The combination of evidence in the transferable belief model [J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12:447-458.
[10]  Luukka P.Feature selection using fuzzy entropy measures with similarity classifier [J].Expert Systems with Applications,2011,38:4600-4607.
[11]  FrakA,Asuncion A.UCI machine learning repository .http://archive.ics.uci.edu/ml/,2010.
[12]  王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社,2008.207-208.
[13]  Zouhal L M,Denoeux T.An evidence-theoretic k-NN rule with parameter optimization [J].IEEE Transactions on Systems,Man,and Cybernetics,1998,28(2):263-271.
[14]  Bandemer H,Nather W.Fuzzy Data Analysis [M].Dordrecht:Kluwer Academic Publisher,1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133