全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

受启发的人工蜂群算法在全局优化问题中的应用

, PP. 2396-2403

Keywords: 人工蜂群算法,差分进化算法,搜索方程,种群初始化

Full-Text   Cite this paper   Add to My Lib

Abstract:

人工蜂群算法是最近提出的一种较有竞争力的优化技术.然而,它的搜索方程存在着探索能力强而开发能力弱的缺点.针对这一问题,受差分进化算法的启发,提出了一个改进的搜索方程.该搜索方程在最优解附近产生新的候选位置以便提高算法的开发能力.进一步,充分利用和平衡不同搜索方程的探索和开发能力,提出了一个改进的人工蜂群算法(简记为IABC).此外,为了提高算法的全局收敛速度,用反学习的初始化方法产生初始解.通过18个标准测试函数的仿真实验并与其他算法相比较,结果表明IABC算法具有良好的处理复杂数值优化问题的性能.

References

[1]  A Bahriye,D Karaboga.A modified artificial bee colony algorithm for real-parameter optimization [J].Information Sciences,2012,192(1):120-142.
[2]  A Singh.An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [J].Applied Soft Computing,2009,9(2):625-631.
[3]  G P Zhu,K Sam.Gbest-guided artificial bee colony algorithm for numerical function optimization [J].Applied Mathematics and Computation,2010,217(7):3166-3173.
[4]  吴晓军,杨战中,赵明.均匀搜索粒子群算法[J].电子学报,2011,39(6):1261-1266. Wu Xiao-jun,Yang Zhan-zhong,Zhao Ming.A uniform searching particle swarm optimization algorithm [J].Acta Electronica Sinica,2011,39(6):1261-1266.(in Chinese)
[5]  张雪霞,陈维荣,戴朝华.带局部搜索的动态多群体自适应差分进化算法及函数优化 [J].电子学报,2010,38(8):1825-1830. Zhang Xue-xia,Chen Wei-rong,Dai Chao-hua.Dynamic multi-group self-adaptive differential evolution algorithm with local search for function optimization .Acta Electronica Sinica,2010,38(8):1825-1830.(in Chinese)
[6]  F Kang,J J Li,Q Xu.Structural inverse analysis by hybrid simplex artificial bee colony algorithms [J].Computers & Structures,2009, 87(34):861-870.
[7]  Q K Pan,M F Tasgetiren,P N Suganthan,T J Chua.A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem [J].Information Sciences,2011,181(12):2455-2468.
[8]  N Karaboga.A new design method based on artificial bee colony algorithm for digital IIR filters [J].Journal of the Franklin Institute,2009,346(4):328-348.
[9]  B Alatas.Chaotic bee colony algorithms for global numerical optimization [J].Expert Systems with Applications,2010,37(8):5682-5687.
[10]  S Rahnama,et al.Opposition-based differential evolution [J].IEEE Transactions on Evolutionary Computation,2008,12(1):64-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133