全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于改进人工蜂群算法的盲源分离方法

DOI: 10.3969/j.issn.0372-2112.2012.10.021, PP. 2026-2030

Keywords: 盲源分离,人工蜂群算法,邻域搜索,自适应

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有盲源分离方法大多存在收敛速度慢、分离精度低的问题,提出一种基于改进人工蜂群(ArtificialBeeColony,ABC)算法的盲信号分离方法.在ABC的邻域搜索公式中自适应调整步长,并加入全局最优解指导项,增强局部趋化性搜索能力.改进的ABC算法保持了ABC全局搜索和局部搜索之间的平衡,使ABC算法可以达到更好的寻优效果,从而提高盲源分离算法的分离精度和稳定性.实验结果表明,提出的改进盲源分离算法可以有效地分离线性瞬时混合信号.与其它算法相比,该算法具有更优异的分离性能,并具有更快的收敛速度.

References

[1]  Jutten C,Herault J.Blind separation of sources,part I:an adaptive algorithm based on neuromimetic[J].Signal Processing,1991,24(1):1-10.
[2]  Cardoso J F,Laheld B H.Equivariant adaptive sources separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017-3029.
[3]  罗志增,李文国.基于小波变换和盲信号分离的多通道肌电信号处理方法[J].电子学报,2009,37(4):823-827. Luo Zhi-zeng,Li Wen-guo.A method of multi-channel EMG disposal based on wavelet transform and blind signal separation[J].Acta Electronica Sinica,2009,37(4):823-827.(in Chinese)
[4]  欧世峰,赵晓晖,高颖.结合辅助分离系统的变步长盲源分离算法[J].电子学报,2009,37(7):1588-1593. Ou Shi-feng,Zhao Xiao-hui,Gao Ying.Variable step-size blind source separation algorithm with an auxiliary separation system[J].Acta Electronica Sinica,2009,37(7):1588-1593.(in Chinese)
[5]  Zhou Guoxu,Yang Zuyuan,Xie Shengli,et al.Mixing Matrix estimation from sparse mixtures with unknown number of sources[J].IEEE Transactions on Neural Networks,2011,22(2):211-221.
[6]  谢平,李红亮,黄双峰.一种盲源分离的优先进化自适应遗传算法[J].计算机仿真,2009,26(6):220-223. Xie Ping,Li Hong-liang,Huang Shuang-feng.An adaptive genetic algorithm for blind source separation[J].Computer Simulation,2009,26(6):220-223.(in Chinese)
[7]  张朝柱,张健沛,孙晓东.基于自适应粒子群优化的盲源分离[J].系统工程与电子技术,2009,31(6):1275-1278. Zhang Chao-zhu,Zhang Jian-pei,Sun Xiao-dong.Blind source separation based on adaptive particle swarm optimization[J].Systems Engineering and Electronics,2009,31(6):1275-1278.(in Chinese)
[8]  Yang H H,Amari S.Serial updating rule for blind separation derived from the method of scoring[J].IEEE Transactions on Signal Processing,1999,47(8):2279-2285.
[9]  Senthil Arumugam M,Rao M V C,Tan Alan W C.A novel and effective particle swarm optimization like algorithm with extrapolation technique[J].Applied Soft Computing,2009,9(1):308-320.
[10]  Amari S,Cichicki A,Yang H H.A new learning algorithm for blind signal separation[J].Advances in Neural Information Processing Systems,1996,8:757-764.
[11]  陆凤波,黄知涛,彭耿,等.基于时频分布的欠定混叠盲分离[J].电子学报,2011,39(9):2067-2072. Lu Feng-bo,Huang Zhi-tao,Peng Geng,et al.Underdetermined blind source separation (BSS):a time-frequency approach[J].Acta Electronica Sinica,2011,39(9):2067-2072.(in Chinese)
[12]  Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis [A].Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA2007) [C].Washington:IEEE Computer Society Press,2007.527-531.
[13]  Karaboga D.An idea based on honey bee swarm for numerical optimization [R].Kayseri:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
[14]  Banharnsakun A,Achalakul T,Sirinaovakul B.The best-so-far selection in artificial bee colony algorithm[J].Applied Soft Computing,2011,11(2):2888-2901.
[15]  杨洪生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.3-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133