全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于信息自由度采样的信号重构方法研究进展

DOI: 10.3969/j.issn.0372-2112.2012.08.023, PP. 1640-1649

Keywords: 信息自由度,不完全采样,高分辨优化重构,压缩感知,低秩矩阵填充问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限的采样能力和高分辨的重构需求是现代信号处理中最基本的矛盾.不完全采样(或观测),高分辨重构信号,是信号处理、通信、应用数学等领域的期待解决的问题之一.本文通过回顾现有的不完全采样、高分辨率重构方法的研究成果,提炼出一个基于信息自由度采样的信号优化重构方法的框架.在此框架中有三个核心方面,信息自由度决定采样率,采样方法确定约束条件,信号特征指导目标函数的建立.本文着重综述采样重构方法有效性的分析手段,评论其优缺点.最后,我们展望基于信息自由度采样的信号重构问题的研究前景,并展示我们的新探索与新成果.

References

[1]  Laska J N,Kirolos S,et al.Theory and implementation of an analog-to-information converter using random demodulation.IEEE International Symposium on Circuits and Systems.New Orleans,LA,USA:IEEE,2007.1959-1962.
[2]  Vetterli M,Marziliano P,et al.Sampling signals with finite rate of innovation.IEEE Transactions on Signal Processing,2002,50(6):1417-1428.
[3]  Hormati A,Vetterli M.Annihilating filter based decoding in the compressed sensing framework.Wavelets XII.San Diego,CA:SPIE,2007.
[4]  Recht B,Fazel M,et al.Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J].SIAM Review,2010,52(3):471-501.
[5]  Fazel M.Matrix rank minimization with applications.USA:Stanford University,2002.
[6]  Muthukrishnan S.Some algorithmic problems and results in compressed sensing.Proceedings of 44th Annual Allerton Conference on Communication,Control and Computing.Allerton,Monticello,Illinois:Curran Associates,Inc.,2006.
[7]  Candès E,Romberg J,et al.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[8]  Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[9]  石光明,刘丹华,等.压缩感知理论及其研究进展[J].电子学报,2009,37(5):146-152. Shi Guang-ming,Liu Dan-hua,Gao Da-hua,Liu Zhe,Lin Jie,Wang Liang-jun.Advances in theory and application of compressed sensing[J].Acta Electronica Sinica,2009,37(5):146-152.(in Chinese)
[10]  Elad M,Figueiredo M A T,et al.On the role of sparse and redundant representations in image processing[J].Proceedings of the IEEE,2010,98(6):972-982.
[11]  Rubinstein R,A Bruckstein M,et al.Dictionaries for sparse representation modeling[J].Proceedings of the IEEE,2010,98(6):1045-1057.
[12]  李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152. Li Ying,Zhang Yan-ning,et al..Advances and perspective on morphological component analysis based on sparse representation[J].Acta Electronica Sinica,2009,37(1):146-152.(in Chinese)
[13]  Donoho D.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
[14]  Candès E,Romberg J,et al.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
[15]  Davenport M A,Wakin M B.Analysis of orthogonal matching pursuit using the restricted isometry property[J].IEEE Transactions on Information Theory,2010.56(9):4395-4401.
[16]  Fornasier M,Rauhut H.Iterative thresholding algorithms[J].Applied and Computational Harmonic Analysis,2008,25(2):187-208.
[17]  Wu X,Zhang X.Model-guided adaptive recovery of compressive sensing[J].DCC,2009.123-132.
[18]  Candès E.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9-10):589-592.
[19]  Needell D,Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2007,9(3):317-334.
[20]  Garnaev A,Gluskin E.The widths of a euclidean ball (russian)[J].Dokl.A.N.USSR,1984,277:1048-1052.
[21]  Vavasis S A.Derivation of compressive sensing theorems for the spherical section property. University of Waterloo,CO 769 lecture notes,2009.
[22]  Donoho D,Tanner J.Precise undersampling theorems[J].Proceedings of the IEEE,2010,98(6):913-924.
[23]  Davies M,Gribonval R.Restricted isometry property and lp sparse recovery failure.Signal Processing with Adaptive Sparse Structured Representations.Saint-Malo,France:Kluwer Academic Publishers,2009.
[24]  Candès E,Plan Y.Accurate low-rank matrix recovery from a small number of linear measurements.Proceedings of the 47th annual Allerton conference on Communication,control,and computing.Allerton House,UIUC,Illinois,USA:IEEE,2009.1223-1230.
[25]  Ma S,Goldfarb D,et al.Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization.Technical Report,Department of IEOR,Columbia University,2008.
[26]  Wen Z,Yin W,et al.Solving a Low-Rank Factorization Model for Matrix Completion by a Nonlinear Successive Over-Relaxation Algorithm.Rice University CAAM Technical Report TR10-07,2010.
[27]  Lee K,Bresler Y.Guaranteed minimum rank approximation from linear observations by nuclear norm minimization with an ellipsoidal constraint[J].Computing Research Repository (CoRR),2009,abs/0903.4742.
[28]  Meka R,Jain P,et al.Guaranteed rank minimization via singular value projection.Technical Report,University of Texas at.Austin,2009.
[29]  Recht B,Xu W,et al.Null space conditions and thresholds for rank minimization.To appear in Mathematical Programming Revised,2010.
[30]  Cai F,Candès E,et al.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on Optimization,2010,20(4):1956-1982.
[31]  Candès E,B Recht.Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,9(6):717-772.
[32]  Mishali M,Eldar Y C,et al.Xampling:Analog to Digital at Sub-Nyquist Rates,to appear in IET Journal of Circuits,Devices and Systems,2010.Available:arXiv 0912.2495.
[33]  Blu T,Dragotti P,et al.Sparse sampling of signal innovations[J].IEEE Signal Process Mag,2008,25(2):31-40.
[34]  Goyal V K,Fletcher A K,et al.Compressive sampling and lossy compression[J].IEEE Signal Processing Magazine,2008,25(2):48-56.
[35]  Candès E,Tao T.Near-optimal signal recovery from random projections:universal encoding strategies?[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[36]  戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. Dai Qiong-Hai,Fu Chang-Jun,Ji Xiang-Yang.Research on compressed sensing[J].Journal of Computers,2011,34(3):425-434.(in Chinese)
[37]  Shi G,Liang L,et al.Design of directional filter banks with arbitrary number of subbands[J].IEEE Transactions on Signal Processing,2009,57(12):4936-4941.
[38]  焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(12A):1975-1981. Jiao Li-cheng,Tan Shan.Development and prospect of image multiscale geometric analysis[J].Acta Electronica Sinica,2003,31(12A):1975-1981.(in Chinese)
[39]  Candès E.Compressive sampling.Proceedings of the International Congress of Mathematicians.Madrid,Spain:EMS Publishing House,2006.1433-1452.
[40]  Mallat S G,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
[41]  Baraniuk R,Davenport M,et al.A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation,2008,28(3):253-263.
[42]  Needell D,Tropp J A.CoSaMP:iterative signal recovery from incomplete and inaccurate measurements[J].Applied and Computational Harmonic Analysis,2008,26:301-321.
[43]  Dai W,Milenkovic O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
[44]  Donoho D.Neighborly polytopes and sparse solution of underdetermined linear equations.Technical Report,Department of Statistics,Stanford University,2004.
[45]  Donoho D,Tanner J.Counting faces of randomly-projected polytopes when the projection radically lowers dimension[J].Journal of the AMS,2009,22(1):1-53.
[46]  Donoho D,Tanner J.Neighborliness of randomly-projected simplices in high dimensions[J].Proceedings of National Academy of Science,2005,102(27):9452-9457.
[47]  Yin W,Zhang Y.Extracting salient features from less data via l1-minimization.SIAG/Optimization Views and News,2008,19(1):11-19.
[48]  Goldfarb D,Ma S.Convergence of Fixed Point Continuation Algorithms for Matrix Rank Minimization.Technical Report,Department of IEOR,Columbia University,2009.
[49]  Dvijotham K,Fazel M.A nullspace analysis of the nuclear norm heuristic for rank minimization.IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Dallas,Texas,USA:IEEE,2010.3586-3589.
[50]  Toh K,Yun S.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J].Pacific Journal of Optimization,2010.6(3):615-640.
[51]  Candès E,Tao T.The power of convex relaxation:near-optimal matrix completion.IEEE Transactions on Information Theory,2009,56(5):2053-2080.
[52]  Dai W,Milenkovic O.SET-An algorithm for consistent matrix completion,2009.Available:arXiv:0909.2705.
[53]  Raghunandan H K,Sewoong Oh,et al.Matrix completion from a few entries.Proceedings of the 2009 IEEE international conference on Symposium on Information Theory.Piscataway,NJ,USA:IEEE,2009.324-328.
[54]  Wu Xiaolin,Dong Weisheng,et al.Model-assisted adaptive recovery of compressed sensing with imaging applications[J].IEEE Transactions on Image Processing,2012,21(2):451-458.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133