Jun Jiang,Symeon Papavassiliou.Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies[J].Computer Communications,2006,29(10):1627-1638.
[2]
罗骞,夏靖波,王焕彬.混沌-支持向量机回归在流量预测中的应用研究[J].计算机科学,2009,36(7):244-246. Luo Yun-qian,Xia Jing-bo,Wang Huan-bin.Application of Chaos-support Vector Machine Regression in Traffic Prediction[J].Computer Science,2009,36(7):244-246.(in Chinese)
[3]
Chen Bor-Sen,Peng Sen-Chueh,Wang Ku-Chen.Traffic Modeling,prediction and congestion control for high-speed networks:a fuzzy AR approach[J].IEEE Tans On Fuzzy Systems,2000,8(5):491-508.
[4]
Chen Y,Yang B.Small-time scale network traffic prediction based on flexible neural tree[J].Applied Soft Computing Journal 2012,12(1):274-279.
[5]
Dong-Chul Park.Prediction of network traffic using dynamic bilinear recurrent neural network.Fifth International Conference on Natural Computation.Tianjin China,2009,Vol.2:419-423.
[6]
陈晓天,张顺颐,田婷婷.基于BP神经网络的IP网络流量预测[J].南京邮电大学学报(自然科学版),2010,30(2):16-21. Chen Xiao-tian,Zhang Shun-yi,Tian Ting-ting.Internet traffic forecasting based on BP neural network[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science),2010,30(2):16-21.(in Chinese)
[7]
Bao Rong Chang,Hsiu Fen Tsai.Improving network traffic analysis by foreseeing data-packet-flow with hybrid fuzzy-based model prediction[J].Expert Systems with Applications 2009,36(3):6960-6965.
[8]
Wei-Chiang Hong.Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J].Neurocomputing 2011,74(12-13):2096-2107.
[9]
Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Math,1987,898(8):175-198.
[10]
韩敏,项牧.局部投影去噪的一种改进的邻域选取方法[J].系统工程学报,2009,24(8):392-398. HAN Min,XIANG Mu.An improved neighborhood selection method for local projection noise reduction[J].Journal of Systems Engineering,2009,24(8):392-398.(in Chinese)
[11]
Ephraim Y,Trees H L V.A signal subspace approach for speech enhancement[J].IEEE Trans on Speech and Audio Processing,1995,3(7):251-261.
[12]
Stoer J,Bulirsch R.Introduction to Numerical Analysis[M].New York:Springer-Verlag,1993.
[13]
He Yu-jun,Zhu Youchan,Duan Dong-xing.Research on hybrid ARIMA and support vector machine model in short term load forecasting.Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA''06).Jinan P.R.China,2006,Vol.1:804-809.
[14]
姜明,吴春明,张,胡大民.网络流量预测中的时间序列模型比较研究[J].电子学报,2009,37(11):2353-2358. Jiang Ming,et al.Research on the comparison of time series models for network traffic prediction[J].Acta Electronica Sinica,2009,37(11):2353-2358.(in Chinese)
[15]
姚奇富,李翠凤,马华林,张森.灰色系统理论和马尔柯夫链相结合的网络流量预测方法[J].浙江大学学报(理学版),2007,34(4):396-400. Yao Qi-fu,Li Cui-feng,Ma Hua-lin,Zhang Sen.Novel network traffic forecasting algorithm based on grey model and Markov chain[J].Journal of Zhejiang University (Science Edition),2007,34(4):396-400.(in Chinese)
[16]
陆锦军,王执铨.基于混沌特性的网络流量预测[J].南京航空航天大学学报,2006,38(2):217-221. Lu Jin-jun,et al.Prediction of network traffic flow based on chaos characteristics[J].Journal of Nanjing University of Aeronautics &Astronautic,2006,38(2):217-221.(in Chinese)
[17]
叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. Ye Mei-Ying,Wang Xiao-Dong,Zhang Hao-Ran.Chaotic time series forecasting using online least squares support vector machine regression[J].Acta Physica Sinica,2005,54(6):2568-2573.(in Chinese)
[18]
肖支才,王杰,等.基于在线LSSVM算法的变参数混沌时间序列预测[J].航空计算技术,2010,40(3):29-33. Xiao Zhi-cai,Wang Jie,et al..Predict the time series of the parameter-varying chaotic system based on recursive lease square support vector machine(RLS-SVM)[J].Aeronautical Computing Technique,2010,40(3):29-33.(in Chinese)
[19]
J A K Suykens,J Vandewalt.Least squares support vector machine classifiers[J].Neural Processing letters,1999,9(3):293-300.
[20]
M T Rosenstein,J J Collins,C J Deluca.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D,1993,65(1-2):117-134.